Current and emerging treatment options for Gram-negative infections

Yehuda Carmeli, MD, MPH

National Institute for Antibiotic Resistance and Infection Control, Tel Aviv, Israel

Disclaimer

I have received grants, honoraria, travel support, consulting fees, and other forms of financial support from:

- Achaogen Inc,
- Allecra Therapeutics
- bioMérieux SA
- Merck & Co. Inc
- Nabriva Therapeutics

- Pfizer
- PPD
- QPEX Biopharma
- Roche Pharmaceuticals
- Tetraphase Pharmaceuticals Inc
- VenatoRx Pharmaceuticals, Inc.

Priority pathogens

The WHO priority list

PRIORITY: CRITICAL	PRIORITY 2: HIGH	PRIORITY 3: MEDIUM
 Acinetobacter baumannii carbapenem-resistant 	 Enterococcus faecium vancomycin-resistant 	 Streptococcus pneumoniae
 Pseudomonas aeruginosa carbapenem-resistant Enterobacteriaceae 	 Staphylococcus aureus methicillin-resistant vancomycin-intermediate and resistant 	 penicillin-non-susceptible Haemophilus influenzae ampicillin-resistant
carbapenem-resistant, ESBL-producing	 Helicobacter pylori clarithromycin-resistant 	 Shigella spp. fluoroquinolone-resistant
	 Campylobacter spp. fluoroquinolone-resistant 	
	 Salmonellae fluoroquinolone-resistant 	
Source: WHO	 Neisseria gonorrhoeae cephalosporin-resistant fluoroquinolone-resistant 	

WHO 2017. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf. Accessed October 2019.

WHO, World Health Organization.

Deaths Attributable to Carbapenem-Resistant *Enterobacteriaceae* Infections

Matthew E. Falagas,¹ Giannoula S. Tansarli,¹ Drosos E. Karageorgopoulos,¹ and Konstantinos Z. Vardakas¹

CRE Bacteremia mortality 131/222= 60%

	Carba-res	istant	Carba-susce	eptible		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 Bacteremia							
Ben-David 2012	29	42	45	150	18.4%	2.30 [1.68, 3.16]	
Chang 2011	16	17	17	34	17.3%	1.88 [1.32, 2.69]	
Daikos 2007	7	13	5	43	6.0%	4.63 [1.76, 12.16]	│
Daikos 2009	6	14	25	148	9.3%	2.54 [1.26, 5.12]	_ -
Mouloudi 2010	25	37	9	22	12.2%	1.65 [0.95, 2.86]	
Patel 2008	48	99	20	99	14.9%	2.40 [1.54, 3.73]	
Subtotal (95% CI)		222		496	78.1%	2.19 [1.82, 2.63]	•
Total events	131		121				
Heterogeneity: Tau ² =	0.00; Chi ² =	4.53, df	= 5 (P = 0.48)	; l² = 0%			
Test for overall effect:	Z = 8.30 (P	< 0.0000	1)				
1.1.2 Bacteremia or o	ther infecti	ons					
Falagas 2007	16	53	18	53	12.1%	0.89 [0.51, 1.55]	_ _
Gaviria 2011	1	19	3	38	1.4%	0.67 [0.07, 5.99]	
Schwaber 2008	21	48	7	56	8.4%	3.50 [1.63, 7.51]	— -
Subtotal (95% CI)		120		147	21.9%	1.46 [0.47, 4.49]	
Total events	38		28				
Heterogeneity: Tau ² =	0.68; Chi ^z =	8.68, df	= 2 (P = 0.01)	; I ² = 77%	,		
Test for overall effect:	Z= 0.65 (P=	= 0.51)	-	-			
Total (95% CI)		342		643	100.0%	2.05 [1.56, 2.69]	•
Total events	169		149				
Heterogeneity: Tau ² =	0.08; Chi ² =	16.49. d	f = 8 (P = 0.04)); I ² = 51°	%		
Test for overall effect:							0.01 0.1 1 10 100
Test for subgroup diffe			*	403 IZ - 0	04		Against CSE Against CRE

CI, confidence interval; CRE, carbapenem-resistant *Enterobacteriaceae*; M-H, Mantel-Haenszel random effects model.

Efficacy against common MDR GNR

Agent	MDR-E (ESBL)	CR-PA	CR-AB	CRE –Sei KPC	rine OXA-48	CR-metallo- enzyme
Piperacillin/tazobactam	++	-/+	-	-	-	-
Carbapenem	+++++	-	-	-/+	-	-
Ceftolozane/tazobactam	++++	+++++	-	-	-	-
Ceftazidime/avibactam	++++	++++	-	++++	++++	-
Meropenem/vabrobactam	+++++	-/+		++++	-	
Imipenem/relebactam	+++++	++		++++	-	
Cefiderocol	++	++	++	++	++	++
Colistin	-/+	+	+	+	+	+

MDR, multidrug resistance; GNR, Gram-negative; CR-PA, carbapenem resistant *Pseudomonas aeruginosa;* CR-AB, carbapenem resistant *Acinetobacter baumannii*.

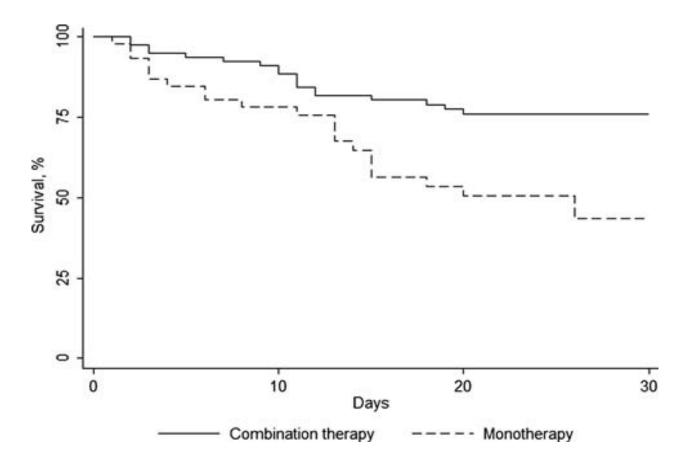
Colistin

- Used for almost two decade as the go-to agent to treat carbapenem-resistant GNR
- Correct dosing was figured out only in the last decade
- Accurate susceptibility testing still unsolved
- Its efficacy is doubtful
- It has serious side effects

All-cause mortality: colistin vs. comparator antibiotics for sepsis

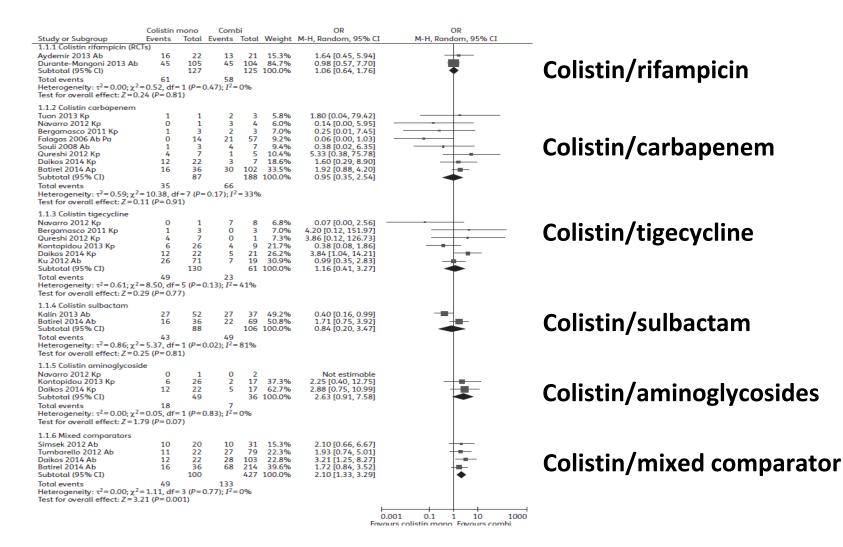
	Colist	in	Compar	ator		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
121 Pseudorandomized							
Betrosian 2008 J Infect Subtotal (95% CI)	5	15 15	4	13 13	2.4% 2 .4%	1.13 (0.23, 5.54) 1.13 (0.23, 5.54)	-
Total events Heterogeneity: Not applicabl Test for overall effect: Z = 0.14			4				
1.2.2 Matched retrospective							
Durakovic 2011 Intern Med	3	26	3	26	2.3%	1.00 [0.18, 5.48]	
Kallel 2007 int CM Subtotal (95% CI)	21	60 86	15	60 86	8.3% 10.6%	1.62 [0.73, 3.56] 1.48 [0. 7 3, 3.03]	•
Total events	24		18				
Heterogeneity: Chi ² = 0.25, df Test for overall effect: Z = 1.08		2); ² =	0%)				
123 Non-matched prospecti	ve						
Garnacho-Montero 2003 CID	13	21	9	14	3.5%	0.90 [0.22, 3.68]	
Hachem 2007 AAC	19	31	30	64	6.5%	1.79 [0.75, 4.30]	+
Reina 2005 Int CM	16	66	34	130	14.8%	0.90 [0.46, 1.79]	
Paul 2011 JAC Subtotal (95% CI)	78	200 918	85	295 503	35.8% 60.6%	1.58 [1.08, 2.31] 1.40 [1.03, 1.89]	-
Total events	126		158				
Heterogeneity: Chi ² = 2.64, df Test for overall effect: Z = 2.18	•	5); ² =	0%)				
1.2.4 Non-matched retrospec	tive						
Qureshi 2012 AAC	5	14	4	14	2.2%	1.39 [0.28, 6.84]	
Gounden 2009 BMC Infect	16	32	9	32	3.8%	2.56 [0.91, 7.20]	├
Kvirko 2011 (polyB) JAC	30	45	25	88	4.8%	5.04 [2.32, 10.93]	
Rios 2007 Eur Resp	16	31	14	40	5.1%	1.98 [0.76, 5.16]	+
Oliveira 2008 (polyB) JAC Subtotal (95% Cl)	63	82 20 4	54	85 25 9	10.5% 26 .4%	1.90 [0.97, 3.75] 2.54 [1.71, 3.78]	•
Total events Heterogeneity: Chi² = 4.52, df Test for overall effect: Z = 4.62		-	106 12%)				
Total (95% Cl)		623		861	100.0%	1.70 [1.36, 2.13]	
		020		901	100.00	100 [00, 20]	•
Total events	285 (286				
Heterogeneity: $Chi^2 = 13.29$, di			= 17%0				0.01 0.1 1 10 1
Test for overall effect: $Z = 4.67$	<pre>(□ < 0.0000</pre>	uj –					Favours colistin Favours compara

CI, confidence interval; M-H, Mantel-Haenszel random effects model.


Clinical Microbiology and Infection 2012 18, 18-29DOI: (10.1111/j.1469-0691.2011.03734.x)

Combination therapy

- Rational for combination therapy
 - Colistin unsatisfactory efficacy
 - Hetero-resistance to colistin
 - Time to reach appropriate levels
- Various agents has been recommended
 - Rifampicin, carbapenems, quinolones, various beta-lactams, tetracycline, aminoglycosides, tigecycline
- Variable in vitro and in vivo results may reflect strain to strain variation
- Human data are limited and difficult to interpret
 - Two large randomized trials are being conducted


KPC-producing Kp

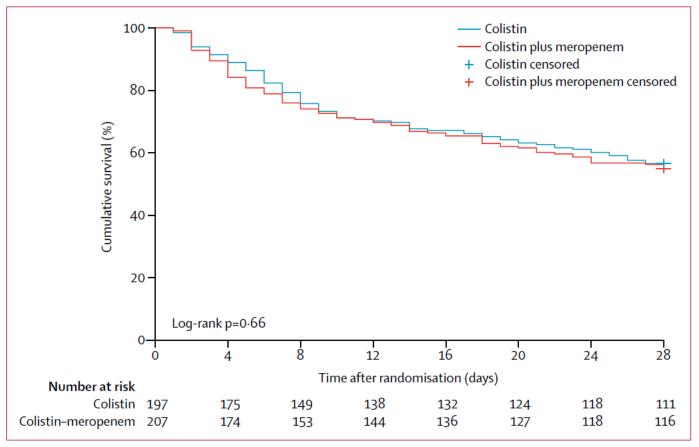
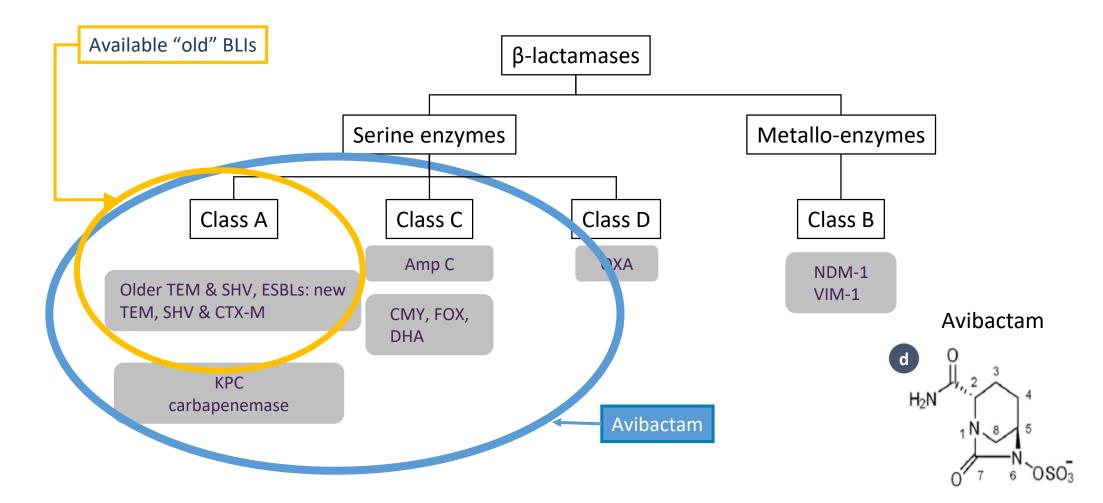
- 125 patients with BSI
- The overall 30-day mortality rate was 41.6%
 - Monotherapy: 54.3%
 - Combination: 34.1%
 - KPC-Kp BSIs are associated with high mortality

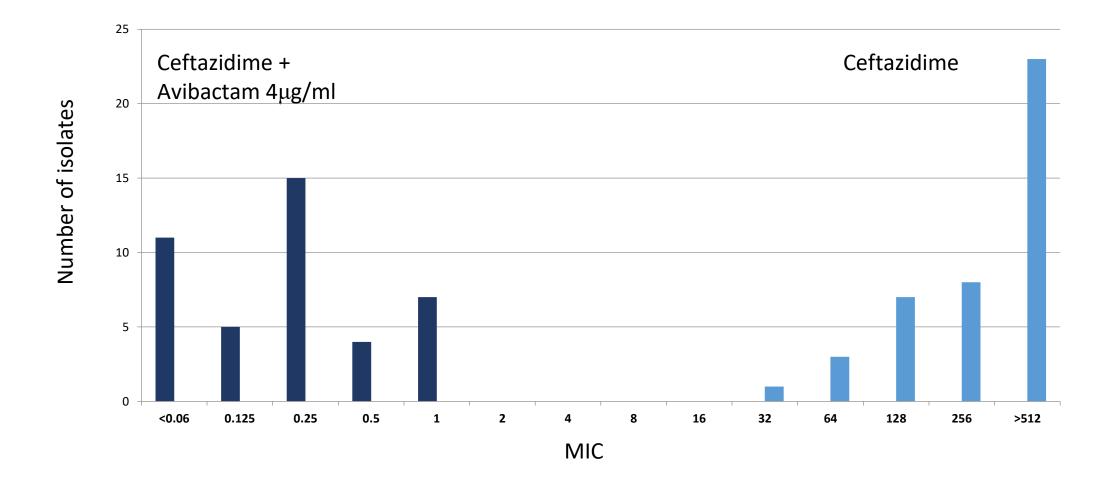
Combination therapy for carbapenem-resistant Gram-negative bacteria

Mical Paul¹*, Yehuda Carmeli², Emanuele Durante-Mangoni³, Johan W. Mouton⁴, Evelina Tacconelli⁵, Ursula Theuretzbacher⁶, Cristina Mussini⁷ and Leonard Leibovici^{8,9}

Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial

Mical Paul, George L Daikos, Emanuele Durante-Mangoni, Dafna Yahav, Yehuda Carmeli, Yael Dishon Benattar, Anna Skiada, Roberto Andini, Noa Eliakim-Raz, Amir Nutman, Oren Zusman, Anastasia Antoniadou, Pia Clara Pafundi, Amos Adler, Yaakov Dickstein, Ioannis Pavleas, Rosa Zampino, Vered Daitch, Roni Bitterman, Hiba Zayyad, Fidi Koppel, Inbar Levi, Tanya Babich, Lena E Friberg, Johan W Mouton,


Figure 2: Survival analysis to day 28 after randomisation

Avibactam – Novel BLI - spectrum of β-lactamase inhibition

BLI, β-lactam inhibitor; KPC, *K. pneumoniae* carbapenemase; NDM, New Delhi metalloβ-lactamase; VIM, Verona Integron-encoded-β- lactamase. Lagacé-Wiens P, et al. *Core Evid*. 2014;9:13–25; Bush K. Int J Antimicrob Agents. 2015;46:483–93; Zavicefta Summary of Product Characteristics.

MIC of 42 KPC producing K. pneumoniae collected in the US

Ceftazidime avibactam *in vitro* activity on 36,380 Enterobacteriaceae and 7,868 *Pseudomonas aeruginosa*

Antimicrobial Activity of Ceftazidime-Avibactam Tested against Multidrug-Resistant *Enterobacteriaceae* and *Pseudomonas aeruginosa* Isolates from U.S. Medical Centers, 2013 to 2016

Helio S. Sader, Mariana Castanheira, Dee Shortridge, Rodrigo E. Mendes, Robert K. Flamm JMI Laboratories, North Liberty, Iowa, USA

 Isolates from all 9 U.S. Census divisions collected from 2013– 2016

CLSI, Clinical Labroatory Standards Institute; CRE, carbapenem-resistant Enterobacteriaceae; EUCAST, The European Committee on Antimicrobial Susceptibility Testing; MIC, minimum inhibitory concentration

agent (no. of isolates tested)MIC soMIC soMIC so%S%R%S%REnterobacteriaceae All isolates (36,380)Ceftazidime-avibactam0.120.2599.90.1*99.90.1Ceftriaxone ≤ 0.06 >885.313.685.313.6Ceftazidime0.25888.89.986.211.2Ceftazidime ≤ 0.12 291.26.789.87.7Piperacillin-tazobactam21692.74.189.87.3Meropenem ≤ 0.06 ≤ 0.06 98.51.398.70.7Levofloxacin ≤ 0.12 >482.615.678.718.8Gentamicin ≤ 1 291.27.690.28.8Amikacin 2 499.20.298.40.8Tigecycline0.25198.00.1*92.72.0Colistin ≤ 0.5 >8 < 78.2 21.6CRE (513) < 78.2 < 21.8 < 78.2 < 21.8 Ceftazidime-avibactam 0.5 2 97.5 $< 2.5^*$ 97.5 $< 2.5^*$ Ceftazidime >32 >32 4.3 93.0 < 2.3 95.7 Ceftazidime >32 >32 4.3 93.0 < 2.3 95.7 Ceftazidime >32 >32 4.3 93.0 < 2.3 95.7 Ceftazidime >32 >32 4.3 93.0 < 2.3	Drganism category and antimicrobial	MIC (µg/ml)		CLSI ^b		EUCAST	
All isolates (36,380)Ceftazidime-avibactam 0.12 0.25 99.9 0.1^* 99.9 0.1 Ceftriaxone ≤ 0.06 >8 85.3 13.6 85.3 13.6 Ceftazidime 0.25 8 88.8 9.9 86.2 11.2 Cefepime ≤ 0.12 2 91.2 6.7 89.8 7.7 Piperacillin-tazobactam2 16 92.7 4.1 89.8 7.3 Meropenem ≤ 0.06 ≤ 0.06 98.5 1.3 98.7 0.7 Levofloxacin ≤ 0.12 >4 82.6 15.6 78.7 18.8 Gentamicin ≤ 1 2 91.2 7.6 90.2 8.8 Amikacin 2 4 99.2 0.2 98.4 0.8 Tigecycline 0.25 1 98.0 0.1^* 92.7 2.0 Colistin ≤ 0.5 >8 >1 97.5 2.5^* 97.5 2.5 Ceftazidime-avibactam 0.5 2 97.5 2.5^* 97.5 2.5 Ceftazidime >32 >32 4.3 93.0 2.3 95.7 Ceftazidime >36 >16 >16 8.4 77.9 3.2 87.7	,	MIC ₅₀	MIC ₉₀	%S	%R	%S	%R
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Interobacteriaceae						
Ceftriaxone ≤ 0.06 >885.313.685.313.6Ceftazidime0.25888.89.986.211.2Cefepime ≤ 0.12 291.26.789.87.7Piperacillin-tazobactam21692.74.189.87.3Meropenem ≤ 0.06 ≤ 0.06 98.51.398.70.7Levofloxacin ≤ 0.12 >482.615.678.718.8Gentamicin ≤ 1 291.27.690.28.8Amikacin2499.20.298.40.8Tigecycline0.25198.00.1*92.72.0Colistin ≤ 0.5 >878.221.8CRE (513) ≤ 0.5 >82.197.52.5*Ceftazidime-avibactam0.5297.52.5*97.52.5Ceftazidime>32>324.393.02.395.7Ceftazidime>16>168.477.93.287.9Piperacillin-tazobactam>64>643.191.22.796.9	All isolates (36,380)						
Ceftazidime 0.25 8 88.8 9.9 86.2 11.2 Cefepime ≤ 0.12 2 91.2 6.7 89.8 7.7 Piperacillin-tazobactam2 16 92.7 4.1 89.8 7.3 Meropenem ≤ 0.06 ≤ 0.06 98.5 1.3 98.7 0.7 Levofloxacin ≤ 0.12 >4 82.6 15.6 78.7 18.6 Gentamicin ≤ 1 2 91.2 7.6 90.2 8.8 Amikacin24 99.2 0.2 98.4 0.8 Tigecycline 0.25 1 98.0 0.1^* 92.7 2.0 Colistin ≤ 0.5 >8 -7.5 2.5^* 77.5 2.5 Ceftazidime-avibactam 0.5 2 97.5 2.5^* 97.5 2.5 Ceftriaxone >8 >8 2.1 97.5 2.1 97.5 Ceftazidime >32 >32 4.3 93.0 2.3 95.7 Ceftazidime >16 >16 8.4 77.9 3.2 87.7 Piperacillin-tazobactam >64 >64 3.1 91.2 2.7 96.7	Ceftazidime-avibactam	0.12	0.25	99.9	0.1*	99.9	0.1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		≤0.06	>8	85.3	13.6	85.3	13.6
Piperacillin-tazobactam21692.74.189.87.3Meropenem ≤ 0.06 ≤ 0.06 98.51.398.70.7Levofloxacin ≤ 0.12 >4 82.615.678.718.8Gentamicin ≤ 1 291.27.690.28.8Amikacin2499.20.298.40.8Tigecycline0.25198.00.1*92.72.0Colistin ≤ 0.5 >8 7.5 2.5*78.221.8CRE (513) 0.5 297.52.5*97.52.5Ceftraixone >8 >8 2.197.52.197.5Ceftazidime-avibactam0.5297.52.5*97.52.5Ceftepime >16 >16 8.477.93.287.9Piperacillin-tazobactam >64 >64 3.191.22.796.9	Ceftazidime	0.25	8	88.8	9.9	86.2	11.2
Meropenem ≤ 0.06 ≤ 0.06 98.5 1.3 98.7 0.7 Levofloxacin ≤ 0.12 >4 82.6 15.6 78.7 18.6 Gentamicin ≤ 1 2 91.2 7.6 90.2 8.8 Amikacin24 99.2 0.2 98.4 0.8 Tigecycline 0.25 1 98.0 0.1^* 92.7 2.0 Colistin ≤ 0.5 >8 78.2 21.6 CRE (513) $CRE (513)$ $Ceftazidime-avibactam$ 0.5 2 97.5 2.5^* 97.5 2.5 Ceftazidime >8 >8 2.1 97.5 2.1 97.5 2.5 Ceftazidime >32 >32 4.3 93.0 2.3 95.7 Cefepime >16 >16 8.4 77.9 3.2 87.7 Piperacillin-tazobactam >64 >64 3.1 91.2 2.7 96.7	Cefepime	≤0.12	2	91.2	6.7	89.8	7.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Piperacillin-tazobactam	2	16	92.7	4.1	89.8	7.3
Gentamicin ≤ 1 291.27.690.28.8Amikacin2499.20.298.40.8Tigecycline0.25198.00.1*92.72.0Colistin ≤ 0.5 >878.221.8CRE (513) ≤ 0.5 297.52.5*97.52.5Ceftraixone>8>82.197.52.197.5Ceftraidime-avibactam0.5297.52.5*97.52.5Ceftriaxone>8>82.197.52.197.5Ceftazidime>32>324.393.02.395.5Cefepime>16>168.477.93.287.5Piperacillin-tazobactam>64>643.191.22.796.5		≤0.06	≤0.06	98.5	1.3	98.7	
Amikacin2499.20.298.40.8Tigecycline 0.25 198.0 0.1^* 92.72.0Colistin ≤ 0.5 >8 78.2 21.8CRE (513) 2 97.5 2.5^* 97.5 2.5 Ceftazidime-avibactam 0.5 2 97.5 2.5^* 97.5 2.5 Ceftazidime >8 >8 2.1 97.5 2.1 97.5 Ceftazidime >32 >32 4.3 93.0 2.3 95.5 Cefepime >16 >16 8.4 77.9 3.2 87.5 Piperacillin-tazobactam >64 >64 3.1 91.2 2.7 96.5		≤0.12	>4	82.6	15.6	78.7	18.8
Tigecycline 0.25 1 98.0 0.1^* 92.7 2.0 Colistin ≤ 0.5 >8 78.2 21.8 CRE (513) 0.5 2 97.5 2.5^* 97.5 2.5 Ceftazidime-avibactam 0.5 2 97.5 2.5^* 97.5 2.5 Ceftriaxone>8>8 2.1 97.5 2.1 97.5 Ceftazidime>32>32 4.3 93.0 2.3 95.5 Cefepime>16>16 8.4 77.9 3.2 87.5 Piperacillin-tazobactam>64>64 3.1 91.2 2.7 96.5		≤1	2	91.2	7.6	90.2	8.8
Colistin ≤ 0.5 >878.221.8CRE (513)Ceftazidime-avibactam0.5297.52.5*97.52.5Ceftriaxone>8>82.197.52.197.5Ceftazidime>32>324.393.02.395.5Cefepime>16>168.477.93.287.5Piperacillin-tazobactam>64>643.191.22.796.5	Amikacin		4	99.2		98.4	
CRE (513) 0.5 2 97.5 2.5* 97.5 2.5 Ceftazidime-avibactam >8 >8 2.1 97.5 2.1 97.5 Ceftriaxone >8 >8 2.1 97.5 2.1 97.5 Ceftazidime >32 >32 4.3 93.0 2.3 95.5 Ceftazidime >16 >16 8.4 77.9 3.2 87.5 Piperacillin-tazobactam >64 >64 3.1 91.2 2.7 96.5		0.25	1	98.0	0.1*	92.7	2.0
Ceftazidime-avibactam0.5297.52.5*97.52.5Ceftriaxone>8>82.197.52.197.5Ceftazidime>32>324.393.02.395.5Cefepime>16>168.477.93.287.5Piperacillin-tazobactam>64>643.191.22.796.5		≤0.5	>8			78.2	21.8
Ceftriaxone>8>82.197.52.197.5Ceftazidime>32>324.393.02.395.5Cefepime>16>168.477.93.287.5Piperacillin-tazobactam>64>643.191.22.796.5							
Ceftazidime>32>324.393.02.395.0Cefepime>16>168.477.93.287.0Piperacillin-tazobactam>64>643.191.22.796.0							2.5
Cefepime>16>168.477.93.287.9Piperacillin-tazobactam>64>643.191.22.796.9							97.5
Piperacillin-tazobactam >64 >64 3.1 91.2 2.7 96.		>32	>32	4.3	93.0	2.3	95.7
	Cefepime	>16	>16	8.4	77.9	3.2	87.1
Meropenem >8 >8 2.7 89.7 10.3 52	Piperacillin-tazobactam	>64	>64	3.1	91.2	2.7	96.9
	Meropenem	>8	>8	2.7	89.7	10.3	52.4
Levofloxacin >4 >4 23.4 72.9 15.0 81.	Levofloxacin	>4	>4	23.4	72.9	15.0	81.3
Gentamicin 8 >8 49.5 33.9 44.4 50.	Gentamicin	8	>8	49.5	33.9	44.4	50.5
Amikacin 8 32 68.2 7.0 51.5 31.	Amikacin	8	32	68.2	7.0	51.5	31.8
Tigecycline 0.5 1 98.8 0.0* 90.3 1.2	Tigecycline	0.5	1	98.8	0.0*	90.3	1.2
		≤0.5	>8			79.1	20.9

Sader, HS, et al. Antimicrobial Activity of Ceftazidime-Avibactam Tested against Multidrug-Resistant Enterobacteriaceae and Pseudomonas aeruginosa Isolates from U.S. Medical Centers, 2013 to 2016. Antimicrob Agents Chemother 2017;61(11):e01045.

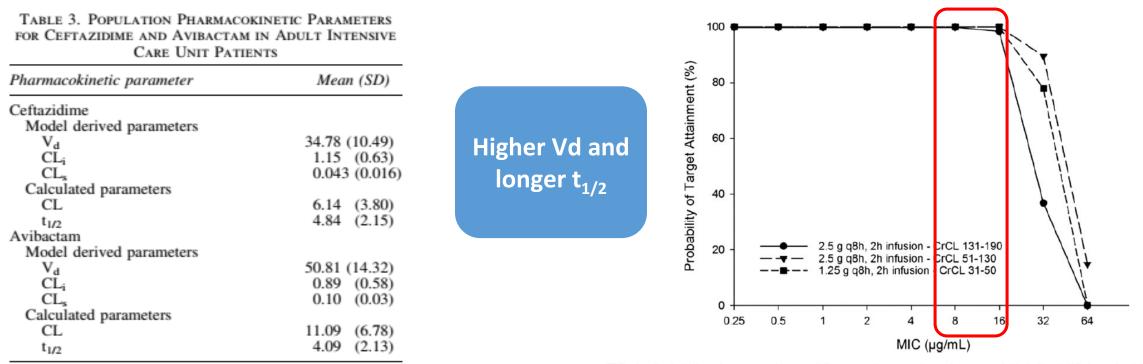
In vitro activity of CAZ-AVI & ATM-AVI against OXA-48-carrying Enterobacteriaceae

•Kazmierczak KM, Bradford PA, Stone GG, de Jonge BLM, Sahm DF. 2018. In vitro activity of ceftazidime-avibactam and aztreonam-avibactam against OXA-48-carrying Enterobacteriaceae isolated as part of the International Network for Optimal resistance Monitoring (INFORM) global surveillance program from 2012 to 2015. Antimicrob agents Chemother 62:e00592-18.

A total of 45,872 *Enterobacteriaceae* clinical isolates collected in 39 countries as part of the International Network for Optimal Resistance Monitoring (INFORM) global surveillance study in 2012 to 2015

	MIC (μg/ml) ^b			
Organism subset (n) and agent ^a	Range	MIC ₅₀	MIC ₉₀	% susceptible ^c
All OXA-48-like-positive Enterobacteriaceae (68)				
Ceftazidime	16 to >128	>128	>128	0.0
Ceftazidime-avibactam	0.06 to >128	1	>128	89.7
Aztreonam	0.05 to >128	128	>128	4.4
Aztreonam-avibactam	0.03 to 8	0.25	4	NA
Cefepime	2 to >16	>16	>16	1.5
Meropenem	0.015 to >8	2	>8	33.8
Imipenem	0.12 to >8	2	>8	29.4
Piperacillin-tazobactam	4 to >128	>128	>128	1.5
Amikacin	1 to >32	8	>32	64.7
Tigecycline	0.12 to 4	0.5	2	92.6
Colistin (52)	0.25 to >4	0.5	1	94.2

Pseudomonas aeruginosa Antimicrobial Susceptibility Results from Four Years (2012 to 2015) of the International Network for Optimal Resistance Monitoring Program in the United States


Helio S. Sader, Michael D. Huband, Mariana Castanheira, Robert K. Flamm

	No. of isolates (%) susceptible to drug(s):				
Resistance group	CAZ-AVI	CAZ	MEM	РТ	
All (n = 7,452)	7,228 (97.0)	6,284 (84.3)	6,096 (82.0)	5,996 (80.5)	
CAZ-NS (\geq 16 mg/liter;	946 (81.0)	0 (0.0)	516 (44.3)	95 (8.1)	
n = 1,168)					

CAZ, ceftazidime; CAZ-AVI, ceftazidime-avibactam; NS, non-susceptible; MEM, meropenem; PT, piperacillin-tazobactam.

Ceftazidime–avibactam* in ICU patients

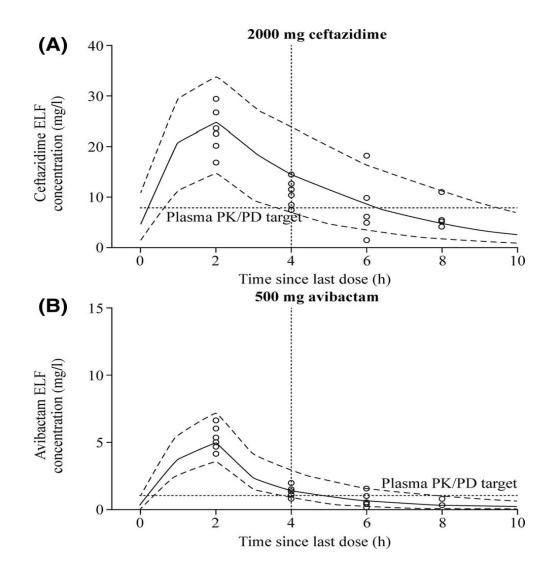

- Ceftazidime-avibactam, infused over 2 h, in 10 ICU patients
- Two pts with ARC, 6 patients with normal RF, two patients with moderate RI

FIG. 1. Probability of target attainment (PTA) at a pharmacodynamic target of 50% fT > MIC for ceftazidime and 50% fT > 1 mg/L for avibactam CrCL=creatinine clearance (mL/min) calculated by Cockcroft-Gault; q8h=every 8 h; MIC=minimum inhibitory concentration.

ARC, augmented renal clearance; CL, clearance; ICU, intensive care unit; MIC, minimum inhibitory concentration; PTA, probability of target attainment; RF, renal function; RI, renal impairment; t1/2, half-life; Vd, volume of distribution.

Plasma and ELF concentration-time profiles

Phase III clinical trials of ceftazidime – avibactam

Γ		onal, multicentre, randomised II studies	
RECLAIM 1, 2 and 3 ¹⁻² : Adults with cIAI	RECAPTURE 1 and 2 ³ : Adults with cUTI (including acute pyelonephritis)	REPRISE ⁴ Adults with CAZ-resistant bacteria	REPROVE ⁵ Adults with HAP (including VAP)
Double-blind randomisation (1:1):	Double-blind randomisation (1:1):	Open-label randomisation (1:1):	Double-blind randomisation (1:1):
 CAZ 2 g + AVI 0.5 g + metronidazole 0.5 g IV q8h <i>or</i> Meropenem 1 g IV + placebo q8h 	 CAZ 2 g + AVI 0.5 g q8h IV <i>or</i> Doripenem 0.5 g + placebo q8h IV 	 CAZ 2 g + AVI 0.5 g + metronidazole 0.5 g q8h IV <i>or</i> Best available therapy 	 CAZ 2 g + AVI 0.5 g q8h IV or Meropenem 1 g q8h IV
Primary objective:	Primary objective:	Primary objective:	Primary objective:
 RECLAIM 1 and 2: Assess non-inferiority of CAZ-AVI re: clinical cure at TOC visit in patients with ≥1 identified pathogen (mMITT populations) RECLAIM 3: Proportion of patients with clinical cure at TOC visit (CE populations) 	 Assess non-inferiority of CAZ-AVI on co-primary endpoints in mMITT analysis set: Resolution of UTI-specific symptoms Resolution/improvement of flank pain Per-patient microbioogical eradication and symptomatic resolution 	 Estimate per-patient clinical response to CAZ-AVI and best available therapy at TOC visit in cUTI and cIAI caused by CAZ-resistant Gram-negative bacteria 	 Assess non-inferiority of CAZ-AVI on clinical cure rate at TOC visit in cMITT and CE populations

AVI, avibactam; CAZ, ceftazidime; CE, clinically evaluable; cIAI, complicated intra-abdominal infection; cMMIT, clinically modified intent-to-treat; cUTI, complicated urinary tract infection; IV, intravenous; mMITT, microbiological modified intent-to-treat; q8h, every 8 h; TOC, test of cure; UTI, urinary tract infection; VAP, ventilator-associated pneumonia.

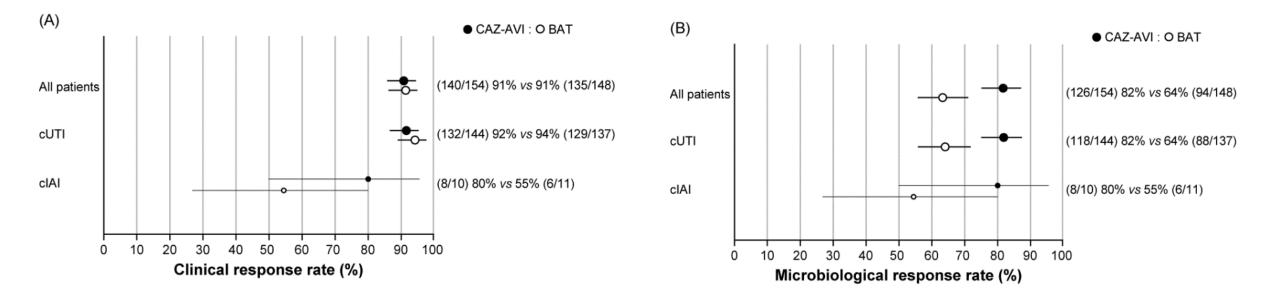
 Mazuski JE, et al. *Clin Infect Dis*. 2016;62:1380–9; 2. ClinicalTrails.gov. NCT01726023; 3. Wagenlehner F, et al. *Clin Infect Dis*. 2016;63:754–62; 4. Carmeli Y, et al. *Lancet Infect Dis*. 2016;16:661–73; 5. Torres A, et al. *Lancet Infect Dis*. 2018;18:285–95.

Ceftazidime-avibactam Versus Doripenem for the Treatment of Complicated Urinary Tract Infections, Including Acute Pyelonephritis: RECAPTURE, a Phase 3 Randomized Trial Program

Florian M. Wagenlehner,¹ Jack D. Sobel,² Paul Newell,³ Jon Armstrong,³ Xiangning Huang,⁴ Gregory G. Stone,⁵ Katrina Yates,^{3,a} and Leanne B. Gasink^{6,b}

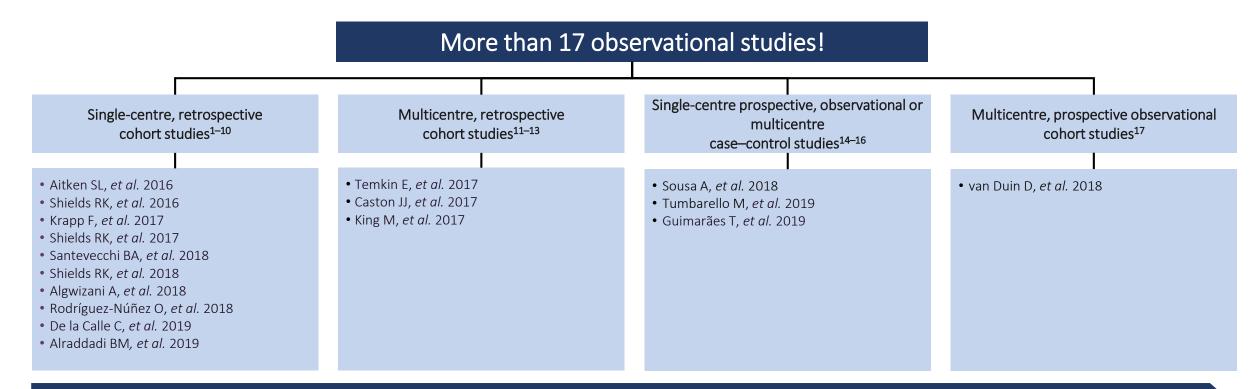
¹Justus-Liebig-University, Giessen, Germany; ²Detroit Medical Center, Michigan; ³AstraZeneca, Alderley Park, Cheshire, and ⁴AstraZeneca, Cambridge, United Kingdom; ⁵AstraZeneca, Waltham, Massachusetts; and ⁶AstraZeneca, Wilmington, Delaware

	Patients, No.	(%)	
Endpoint	Ceftazidime-Avibactam (n = 393)	Doripenem (n = 417)	Difference, % (95% CI)
FDA co-primary endpoints			
Patient-assessed symptomatic resolution ^a at day 5 ^b	276 (70.2)	276 (66.2)	4.0 (-2.39 to 10.42)
Combined patient-assessed symptomatic resolution ^c and favorable per-patient microbiological response at TOC ^b	280 (71.2)	269 (64.5)	6.7 (.30 to 13.12)
Per-patient favorable microbiological response at TOC	304 (77.4)	296 (71.0)	6.4 (.33 to 12.36)
Patient-reported symptomatic resolution at TOC	332 (84.5)	360 (86.3)	-1.9 (-6.78 to 3.02)
EMA primary endpoint			
Per-patient favorable microbiological response at TOC ^d	304 (77.4)	296 (71.0)	6.4 (.33 to 12.36)


CI, confidence interval; EMA, European Medicines Agency; FDA, US Food and Drug Administration; TOC, test of cure.

Wagenlehner F, et al. Clin Infect Dis. 2016;63:754–62.

Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and *Pseudomonas aeruginosa* complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study


Yehuda Carmeli, Jon Armstrong, Peter J Laud, Paul Newell, Greg Stone, Angela Wardman, Leanne B Gasink

Open-label Phase 3 study : 97% of BAT included carbapenems

BAT, best available therapy; CAZ-R, ceftazidime-resistant; cIAI, complicated intraabdominal infection; cUTI, complicated urinary tract infection.

Ceftazidime-avibactam: real-world data

Strength of evidence

1. Aitken SL, et al. Clin Infect Dis 2016;63:954-8; 2. Shields RK, et al. Clin Infect Dis 2016;63:1615-8; 3. Krapp F, et al. Int J Antimicrob Agents 2017;49:770-3;

4. Shields RK, et al. Antimicrob Agents Chemother 2017;61:e00883–17; 5. Santevecchi BA, et al. Int J Antimicrob Agents 2018;51:629–35; 6. Shields RK, et al. Antimicrob Agents Chemother 2018;62:e02497–18;

7. Algwizani A, et al. J Infect Public Health 2018;11:793–5; 8. Rodríguez-Núñez O, et al. J Glob Antimicrob Resist 2018;15:136–9; 9. De la Calle C, et al. Int J Antimicrob Agents 2018;53:520–4; 10. Alraddadi BM, et al. BMC Infect Dis. 2019;19:772;

11. Temkin E, et al. Antimicrob Agents Chemother 2017;61:e01964–16; 12. Caston JJ, et al. Int J Infect Dis 2017;59:118–23; 13. King M, et al. Antimicrob Agents Chemother 2017;61:e00449–17;

14. Sousa A, et al. J Antimicrob Chemother 2018;73:3170–5; 15. Tumbarello M, et al. Clin Infect Dis 2019;68:355–64; 16. Guimarães T, et al. Antimicrob Agents Chemother 2019 Epub ahead of print;

17. van Duin D, et al. Clin Infect Dis 2018;66:163-71.

Salvage therapy with ceftazidime-avibactam

		compassionate-use CAZ-AVI Characteristic	Value $(n = 38)^{a}$
Survey of physicians who prescribed ceftazidime–avibactam for compassionate use	38 patients with multiple comorbidities included	Demographic characteristics Age in yr, median (IQR ^b) Male sex Location before hospitalization Home Transferred from another hospital Comorbidities Transplant recipient Diabetes mellitus Immunosuppression ^c Renal disease Cardiovascular disease McCabe score of >1	61 (47–67) 25 (65.8) 33 (86.8) 5 (13.2) 5 (13.2) 8 (21.1) 10 (26.3) 7 (18.4) 11 (28.9) 19 (50.0)
	Predominantly CRE infections caused by KPC and OXA-48	Infection characteristics Organism and carbapenemase <i>Klebsiella pneumoniae</i> KPC OXA-48 <i>Klebsiella oxytoca</i> (KPC) <i>Escherichia coli</i> (OXA-48) <i>Pseudomonas aeruginosa</i> Hospital-acquired infection Bacteremia	22 12 1 1 2 34 (89.5) 26 (68.4)
	95% received antibiotics prior to ceftazidime-avibactam	Polymicrobial infection Life-threatening infection (high risk of death within 30 days) Antibiotics before CAZ-AVI Received antibiotics before CAZ-AVI for this infection Days of antibiotic treatment before CAZ-AVI, median (IQR) No. of antibiotics before CAZ-AVI, median (IQR)	11 (29.0) 23 (60.5) 36 (94.7) 13 (7–31) 3 (3–4)

CAZ–AVI, ceftazidime–avibactam; CRE, carbapenem-resistant Enterobacteriaceae; IQR, interquartile range; KPC, *Klebsiella pneumoniae* carbapenemase; OXA, oxacillinase.

Salvage therapy with ceftazidime-avibactam

74% of patients with clinical and/or microbiologic cure¹

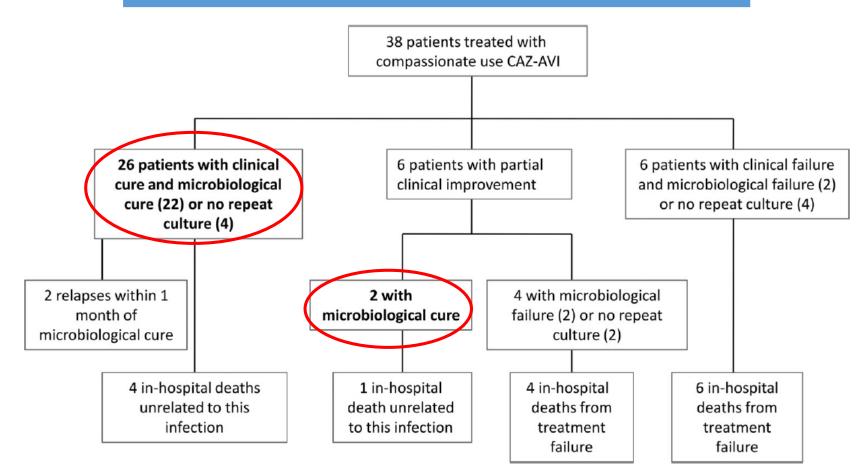
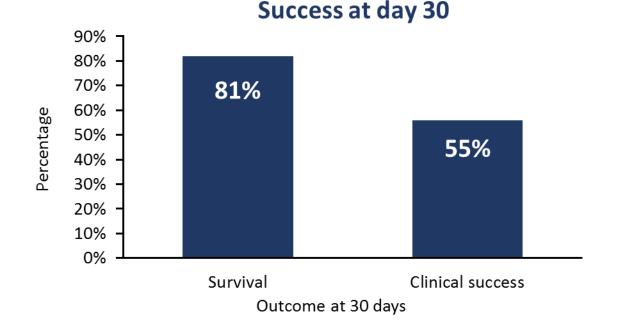
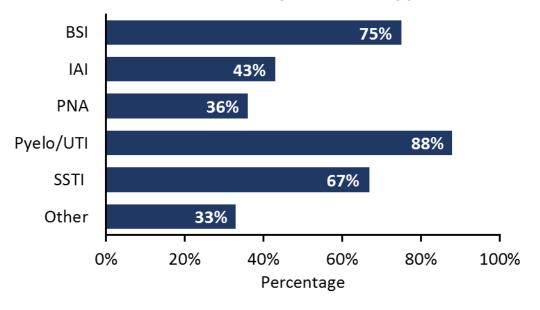


FIG 1 Outcomes of patients with carbapenem-resistant infections treated with compassionate-use CAZ-AVI.

Clinical Outcomes, Drug Toxicity, and Emergence of Ceftazidime-Avibactam Resistance Among Patients Treated for Carbapenem-Resistant Enterobacteriaceae Infections

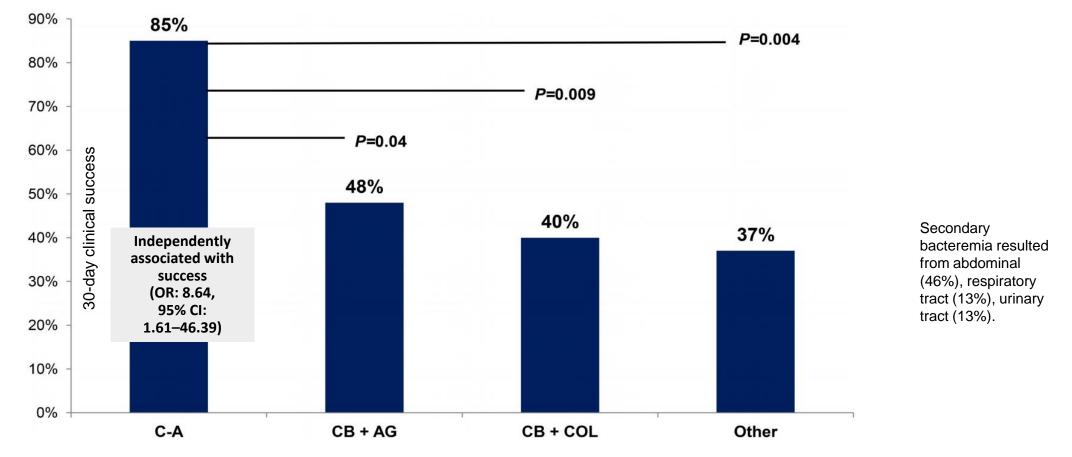

Ryan K. Shields,^{1,3,4,a} Brian A. Potoski,^{1,2,3,a} Ghady Haidar,¹ Binghua Hao,⁴ Yohei Doi,¹ Liang Chen,⁶ Ellen G. Press,¹ Barry N. Kreiswirth,⁶ Cornelius J. Clancy,^{1,4,5} and M. Hong Nguyen^{1,3,4}

- 37 patients, median age 64 y, 30% transplant recipients
- 12 pneumonia, 10 bacteremia
- Ceftazidime/avibactam monotherapy 70%
- 30d survival 76%, 90d survival 62%
- Failure
 - Death 9, reoccurrence 4, non clinical cure 2
- Microbiology failure 27%
 - 3 patient emergence of resistance (10-19 days of treatment)


Real-world data from the USA

• 77 patients were treated with ceftazidime–avibactam for CRE infections between April 2015 and April 2017

- 60 K. pneumoniae, nine E. coli, six Enterobacter spp., one S. marcescens, one K. oxytoca

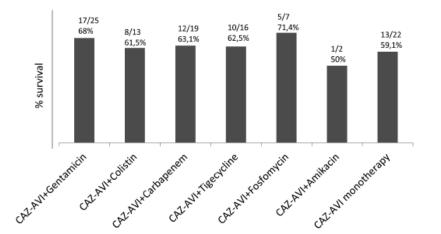


BSI, bloodstream infection; CRE, carbapenem-resistant Enterobacteriaceae; IAI, intraabdominal infection; PNA, pneumonia; Pyelo, pyelonephritis; SSTI, skin and soft tissue infection; UTI, urinary tract infection.

Success by disease type

Mortality rate in KPC-producing *K. pneumoniae* bacteraemia experience with ceftazidime-avibactam

AG, aminoglycoside; CAZ–AVI, ceftazidime-avibactam; CB, carbapenem-based; CI, confidence interval; COL, colistin; KPC, K. pneumonia carbapenemase; MIC, minimum inhibitory concentration; OR, odds ratio


Outcomes of patients with MDR Gram-negative infections treated with colistin-based regimens

BSI, blood stream infection; CAZ-AVI, Ceftazidime–avibactam; CI, confidence interval; IPTW, inverse probability of treatment weighting; MDR, multi-drug resistant.

Efficacy of Ceftazidime-Avibactam Salvage Therapy in Patients With Infections Caused by *Klebsiella pneumoniae* Carbapenemase–producing *K. pneumoniae*

Mario Tumbarello,^{1,a} Enrico Maria Trecarichi,^{1,a} Alberto Corona,² Francesco Giuseppe De Rosa,³ Matteo Bassetti,⁴ Cristina Mussini,⁵ Francesco Menichetti,⁶ Claudio Viscoli,⁷ Caterina Campoli,⁸ Mario Venditti,⁹ Andrea De Gasperi,¹⁰ Alessandra Mularoni,¹¹ Carlo Tascini,¹² Giustino Parruti,¹³ Carlo Pallotto,¹⁴ Simona Sica,¹⁵ Ercole Concia,¹⁶ Rosario Cultrera,¹⁷ Gennaro De Pascale,¹⁸ Alessandro Capone,¹⁹ Spinello Antinori,²⁰ Silvia Corcione,³ Elda Righi,⁴ Angela Raffaella Losito,¹ Margherita Digaetano,⁵ Francesco Amadori,⁶ Daniele Roberto Giacobbe,⁷ Giancarlo Ceccarelli,³ Ernestina Mazza,¹⁰ Francesca Raffaelli,¹ Teresa Spanu,²¹ Roberto Cauda,¹ and Pierluigi Viale⁸

Overall 30 days survival CR-KP BSI

- 104 patients treated with CAZ-AVI 36.5%
- 104 matched patients treated with other agents 55.8%

Table 4. Multivariate Analysis of Factors Associated With 30-Day Mortality in the 208 Patients With *Klebsiella pneumoniae* Carbapenemase–producing *K. pneumoniae* Bacteremia

	Without Prope	nsity Score Adjustment	-	ne Propensity Score for y With CAZ-AVI
Variable	P Value	OR (95% CI)	P Value	OR (95% CI)
Mechanical ventilation	<.001	4.25 (1.99-9.09)	<.001	4.31 (1.99–9.33)
Charlson comorbidity index ≥3	.001	3.31 (1.61-6.77)	.001	3.30 (1.61-6.77)
Neutropenia	.01	3.22 (1.25-8.29)	.03	3.36 (1.25-8.75)
Septic shock	.002	2.95 (1.46-5.94)	.003	2.94 (1.46-5.92)
Any regimen that included CAZ-AVI	<.001	0.25 (.13–.51)	.001	0.27 (.13–.57)

BSI, bloodstream infection; CAZ-AVI, ceftazidime-avibactam; CI, confidence interval; CR-Kp, carbapenem-resistant *Klebsiella pneumoniae*; OR, odds ratio.

Efficacy of Ceftazidime-Avibactam Salvage Therapy in Patients With Infections Caused by Klebsiella pneumoniae Carbapenemase-producing K. pneumoniae

at start of salvage regimen А В 8 8 75 75 Survival, % 50 * Survival. 50 no CAZ-AVI CAZ-AVI no CAZ-AVI CAZ-AVI 25 25 0 0 0 10 20 30 10 20 30 0 Days from BSI onset Days from BSI onset

Unadjusted

Adjusted for the presence of septic shock

P2469 Impact of ceftazidime-avibactam on mortality of OXA-48-producing *Klebsiella pneumoniae* bacteraemia

Olalla Lima^{*1}, Adrian Sousa¹, María Teresa Pérez-Rodríguez^{1,2}, Rebeca Longueira¹, Patricia Diéguez¹, Milagros Suárez¹, Francisco Vasallo Vidal¹, Antonio Pérez-Landeiro¹, Manuel Crespo^{1,2}

	CAZ-AVI (n = 21)	Other * (n = 63)	Р
Age >70 years, (%)	7 (33)	31 (49)	0.311
Sex male, n (%)	10 (48)	48 (76)	0.027
Charlson >3	10 (48)	36 (57)	0.461
Nosocomial acquisition, n (%)	18 (86)	45 (71)	0.251
Source of infection, n (%)	0.0000.00	12. CMB (47. CMB (47.	Constant and a second
- Urinary	4 (19)	30 (48)	0.023
- Catheter	9 (43)	15 (24)	0.104
 Respiratory 	2 (10)	9 (14)	0.723
 Abdominal 	4 (19)	4 (6)	0.103
- Unknown	2(10)	5 (8)	1
Pitt index >2, n (%)	10 (48)	26 (41)	0.621
Increment score >11, n (%)	12 (57)	35 (56)	1
Adequate empirical therapy, n (%)	9 (43)	22 (35)	0.603
Outcome			
- Cure	20 (95)	43 (68)	0.018
- Recurrence	4 (19)	5 (8)	0.218
 14-day mortality 	1 (5)	18 (29)	0.033
 30-day mortality 	3 (14)	19 (30)	0.251

Table. Characteristics of patients analysed

* Other therapies: carbapenem + colistina (n=34); carbapenem + 2 active drugs (n=13); others (n=16)

Ceftazidime-avibactam as salvage therapy for infections due to OXA-48 CPE

- Prospectively collected cohort of adults with OXA-48 CPE infections
 - 57 patients were treated with ceftazidime–avibactam
 - The most frequent sources of infection were intra-abdominal (28%), respiratory (26%) and urinary (25%)
 - 54% patients had a severe infection (defined as presence of sepsis or septic shock)
 - 81% patients received ceftazidime–avibactam monotherapy
 - Median duration of treatment was 13 days
- 77% had clinical cure
- The emergence of resistance to ceftazidime—avibactam was not observed

Emergence of resistance

- Emergence of ceftazidime-avibactam resistance was noticed in one study in 10% of the patients with KPC infection.
 - Mostly transplant center, in patients with renal replacement therapy
 - Resistance due to de-novo mutations which usually result in regaining in carbapenem susceptibility
- In other studies emergence of ceftazidime-avibactam resistance is uncommon
 - Recent experience with 203 CRE patients (62 with repeated cultures) 1 case of emergence of resistance

Summary

- In an era of increasing drug resistance new treatment modalities are important
- Ceftazidime/avibactam is a promising agent, proved in treatment of ceftazidime resistant GNR
- Experience with treatment of severe infections in hard to cure carbapenem-resistant *Enterobacteriaceae* is accumulating, showing 60-80% success and superiority compared to BAT
- Events of emergence of resistance in KPC-3 producers may occur occasionally primarily in transplant patient with renal replacement therapy