Non-Invasive Ventilation in the Treatment of Sleep-Disordered Breathing

邱國樑 醫師

台中慈濟醫院胸腔內科暨睡眠醫學中心 慈濟大學 學士後中醫學系

Outlines

- Positive airway pressure for sleep-disordered breathing (SDB)
- Noninvasive ventilation (NIV)
- NIV for SDB
 - Who and why?

Obstructive Sleep Apnea

The First CPAP in 1980 --A Reversed Vacuum

Sullivan CE, AJRCCM 2018

http://www.internetage.ws/general/bellavista-1/

Evolution of CPAP Machines Improvement in Size, Noise, and More

PAP for SDB

- Continuous positive airway pressure (CPAP)
- Auto-titration (continuous) PAP
- Bilevel PAP
- Adaptive servo-ventilation (ASV)

Non-Invasive Ventilation (NIV)

- To deliver mechanical ventilation to the lungs using techniques that do not require an invasive artificial airway (endotracheal tube, tracheostomy)
- Goals:
 - Provide time for the cause of respiratory failure to resolve and improve gas exchange
 - Overcome auto-PEEP
 - Unload the respiratory muscle
 - Decrease dyspnea
 - Avoid Endotracheal Intubation
 - Avoid complications

Antonello N, et al., J Gen Pract 2013

Types of NIV

Negative Pressure NIV

Main means of NIV during the early 1900's

- Extensively used during the polio epidemics
- Tank ventilator "iron lung"

Cuirass, Jacket ventilator, Hayek oscillator

Positive Pressure NIV Positive pressure delivered through mask CPAP AutoCPAP (AutoPAP) **BIPAP (Bilevel PAP)** ASV (Adaptive servo-ventilation) **AVAPS**

Indication of NIV in Sleep-disordered Breathing

- Obstructive sleep apnea (OSA)
- Central sleep apnea (CSA), complex sleep apnea
- Chronic obstructive pulmonaryu disease (COPD), COPD-OSA overlap syndrome
- Restrictive thoracic disorders
- Obesity Hypoventilation Syndrome (OHS)

Nicolini A, et al. Rev Port Pneumol.2014;20(6):324-335

NIV for OSA

Improvement in Survival of OSA by CPAP

Fatal Cardiovascular Events

Marin et al. Lancet 2005

Non-fatal CV Events

Efficacy in Treatment of OSA No Difference in Use Hours in OSA

Reeves-Hoche MK, et al. AJRCCM 1995

CPAP and NIV in Treatment of OSA

	СРАР	Novel Bilevel PAP	
	(n=15)	(n=12)	
Baseline			
BMI	34.1 ±4.7	36.6 ± 6.0	
AHI at PSG night	46.1 ±23.1	41.8 ± 25.8	
Titration night			
Optimal Pressure, cmH2O	8.8 ±1.1	8.9 ± 1.6	
AHI at titration night	7.6 ± 11.9	3.7 ± 4.4	
Sleep efficiency, %	73.4 ±15.0	84.4±14.4	
Total sleep time, m	115.2 ±36.9	89.6 ± 42.5	
Epworth Sleepiness Scale			
Pretreatment	13.5 ±3.4	14.2 ± 3.4	
Posttreatment	8.0 ±4.8	7.8 ± 3.8	

Gay PC, et al. Sleep 2003

CPAP and NIV in Treatment of OSA

No difference between CPAP and BiPAP in treatment of OSA

Gay PC, et al. Sleep 2003

NIV in OSA

 No difference in compliance compared to CPAP

• Maybe considered only in patients needing a high pressure, or CPAP ineffective.

NIV for CSA

Prevalence of SDB in HF

AHI > 15/h OSA CSA

Javaheri S, et al, JACC 2017

Survival of HF with/without CPAP

Survival in HF Patients with SDB

Wang H *et al. JACC 2006;* Lanfranchi et al. Circulation 1999

Effect of Positive Airway Pressure on Airway and Alveoli

Positive airway pressure

Positive end-expiratory pressure

Yoshihisa A, et al. Fukushima J Med Sci 2017

Effects of CPAP on HF with CSA

Bradley TD, et al. NEJM 2005

Effect of CPAP on HF with CSA on Mortality -- No improvement in survival ???!!!

Bradley TD, et al. NEJM 2005

Different Effects of CPAP on CSA AHI LVEF

Arzt M, et al. Circulation 2007

CPAP on Outcomes of CHF-CSA

Arzt M, et al. Circulation 2007

Different Modalities in Tx of CSA

Treschler H, et al. AJRCCM 2001

Effects of NIV on Heart Function in HF Patient with CSR-CSA

NIV in Patients with CHF

Baseline PSG

Initial NIV Support

Stable NIV Support

Willson GN, et al. Eur Respir J 2001; 17: 1250–1257

NIV Improves CSA

Willson GN, et al. Eur Respir J 2001; 17: 1250–1257

ASV in CSA of HF SAVIOR-C Trial, 24 wk, n=205

Some Clinical Response

(QoL, NYHA Class etc.)

No Survival Benefits

Momomura SI, et al. Circ J 2015

ASV Increased Mortality in CSA SERVE-HF Trial (0-80 m, Median 31 m), n=1325

Cowie MR, et al. NEJM 2015

ASV in HF with Low LVEF SERVE-HF Trial

	n (%)	Hazard ratio	95% Cl	p interaction
LVEF >36%	340 (37%)	1.21	0.48-3.08	0.026
LVEF 31-36%	243 (18%)	2.33	0.60-9.03	0.026
LVEF ≤30%	486 (26%)	5·21	2.11-12.89	0.026

LVEF data missed in 19% of patients

Eulenburg C, et al. Lancet Respir Medicine 2016

ASV vs CPAP in CSA Treatment A Network Meta-analysis

Schwarz EI, et al. Chest 2017;151(5):A60,

ADVENT-HF Trial (ASVpf) Preliminary Data on Adherence, 12m, n=177

NIV for COPD or Overlap Syndrome (OSA + COPD)

Sleep in COPD Patients

- Airflow limitation
- Hypoventilation in sleep
 - In health subjects, minute ventilation decreases about 6-16% in sleep, especially in REM sleep. Douglas NJ, Thorax 1982
- Leading to significant nocturnal hypoxemia

Randerath W, et al. Eur Respir Rev 2019; 28: 190084
SDB in COPD Patients

Symptoms or findings indicative for sleep disordered breathing in patients with COPD

Sleep-related symptoms such as snoring, gasping and choking, as well as nocturia or morning headache Increased daytime sleepiness

Signs of obesity including BMI >30 kg·m⁻² in men and >35 kg·m⁻² in women, neck circumference >43 cm

in men and >41 cm in women

Reduced daytime pulse oxygen saturation (<93%) at rest or during exercise

Daytime hypercapnia

Signs of pulmonary hypertension or right heart failure, such as peripheral oedema

Polycythaemia

Patients who use opioids and/or hypnotic medications

Comorbidities such as atrial fibrillation, end-stage renal disease, type 2 diabetes, heart failure, difficult to treat hypertension and stroke

McNicholas WT, et al. Eur Respir Rev 2019; 28: 190064

COPD and OSA The "Overlap Syndrome"

• OSA and COPD are both prevalent

- (4-9% and 10-20%, respectively)

• OSA and COPD share risk factors

male gender, age, cigarette smoking

- Control of breathing defect may predispose to OSA
- 11% of 265 patients with OSA have COPD

Nocturnal Hypoxemia in COPD

Douglas NJ, et al. Lancet 1973

Transient Hypoxemia during Sleep

Douglas NJ, et al. Lancet 1973

```
41

至中感濟晉院

TAICHUNG TEU CHI HOGHTAI
```

Nocturnal Hypoxemia and Hypercapnia in COPD

McNicholas WT, et al. Eur Respir Rev 2019; 28: 190064

Nocturnal Hypercapnia in COPD

43% of daytime hypercapnic COPD patients spent ≥20% of total sleep time with an increase of PtcCO2 > 10 mmHg

O'Donoghue FJ, et al. Eur Respir J 2003; 21: 977-984

Factors Correlated with Overnight Sleep Hypoventilation

	20% incr	Maxincr	
Age	-0.19 (0.17)	-0.05 (0.72)	
Female [#]	-0.15 (0.27)	-0.10 (0.50)	
BMI	0.27 (0.05)	0.37 (0.01)	
FEV1 % pred [#]	0.19 (0.17)	0.19 (0.19)	
FVC % pred	0.05 (0.72)	-0.06 (0.71)	
FEV1/FVC	0.10 (0.46)	0.25 (0.08)	
Pa,O ₂	-0.18 (0.24)	-0.18 (0.26)	
Pa,CO_2	0.39 (0.009)	0.42 (0.007)	
Life alcohol [#]	-0.29 (0.06)	-0.11 (0.52)	
Current alcohol [#]	-0.31 (0.04)	-0.23 (0.14)	
$AHI^{\#}$	0.13 (0.33)	0.22 (0.13)	
%SWS	-0.10 (0.46)	-0.05 (0.75)	
%REM	0.28 (0.04)	0.32 (0.03)	
TST	0.18 (0.19)	0.17 (0.25)	
REMflow	0.12 (0.53)	0.17 (0.37)	
NREMflow	0.00 (0.98)	0.16 (0.38)	

O'Donoghue FJ, et al. Eur Respir J 2003; 21: 977–984

Factors Correlated with Hypoventilation in REM Sleep

	ANREM-REM
Age	-0.13 (0.29)
Female [#]	-0.03 (0.78)
BMI	0.09 (0.45)
$FEV1 \% pred^{\#}$	0.04 (0.75)
FVC % pred	-0.29 (0.02)
FEV1/FVC	0.20 (0.1)
Pa,O_2	-0.02 (0.85)
Pa,CO_2	0.18 (0.17)
Life alcohol [#]	0.02 (0.88)
Current alcohol [#]	-0.08 (0.55)
AHI [#]	0.25 (0.04)
AHI in REM sleep [#]	0.24 (0.05)
%REM	-0.12 (0.32)
%SWS	0.32 (0.01)
REMflow	0.31 (0.04)
NREMflow	0.05 (0.71)

O'Donoghue FJ, et al. Eur Respir J 2003; 21: 977–984

Increased Arousals with Decreased Oxygen Saturation

Overlap Syndrome (OSA+COPD)

- Older in age
- More severe in nocturnal oxygen desaturation
- More arousals (due to hypoxemia and OSA)
- More prevalent in pulmonary hypertension
- Outcomes, such as survival, cardiovascular events
 No data

Treatment of Overlap Syndrome

- Nasal CPAP
 - Treatment of choice
- Nasal CPAP plus supplemental oxygen
 - For uncorrectable hypoxemia after correction of OSA with CPAP
- Noninvasive positive airway pressure
 - Works for OSA, hypoxemia and hypercapnia

NIV for Restrictive Thoracic Disorders

Factors Contributing to SDB in Neuromuscular and Chest Wall Disease

- Effects of sleep on breathing in normal individuals
- Loss of wakefulness drive to breathe •
- Reduction in nonmetabolic inputs to

 ventilation
- Decreased chemo-responsiveness to hypoxia and hypercapnia
- REM-related skeletal muscle atonia
- Reduced lung volumes
- Increased upper airway resistance
- Chest wall abnormality

- Superimposed loads in individuals with restrictive thoracic disorders
- Diaphragm weakness
- Weakness of accessory muscles of respiration
- Upper airway muscle weakness
- Obesity
- Macroglossia
- Craniofacial abnormalities
- Associated cardiomyopathy
- Atelectasis
- Further decreased chemoresponsiveness

Hilbert J. Clin Chest Med 2018;39:309-324

Major neuromuscular and skeletal disorders provoking sleep hypoventilation

Neuromuscular disorders Guillain-Barré syndrome Myasthenia gravis Poliomyelitis Post-polio syndrome Amyotrophic lateral sclerosis Cervical or thoracic spinal cord injury Polymyositis Muscular dystrophies

Skeletal chest wall diseases

Kyphoscoliosis Ankylosing spondylitis

McNicholas WT, et al. Eur Respir Rev 2019; 28: 190064

Neuromuscular and Chest Wall Diseases

- Restrictive lung disease
 - Low vital capacity
 - Low function residual lung volume
- During sleep
 - Decrease in SaO₂
 - Increase in PaCO₂
 - Increased arousals, poor sleep efficiency

Pathophysiology of sleep-related hypoventilation in neuromuscular diseases

Lung Volume Changes in Sleep in Patients with Neuromuscular Disorder

PSG in NMD

Aboussouan LS, et al. Chest 2017; 152(4):880-892

Improvement by NIV in NMD

金子 生中慈済智院 Талснико так ска новента

NIV in Patients with ALS

	NIV (n=22) Standard care (n=19)		
Age (years)	63.7 (10.3)	63.0 (8.1)	
Sex (male)	14 (64%)	10 (53%)	
Disease duration* (years)	1.9(1.3)	2.0 (1.1)	
Riluzole	19 (86%)	17 (89%)	
Bulbar score	3.4(1.7)	3.3 (1.8)	
Vital capacity (% predicted)	55.6% (18.7)	48.8% (20.7)	
Pımax (% predicted)	31.1% (11.0)	31.0% (10.6)	
SNIP (% predicted)	22.6% (11.4)	24·4% (10·8)	
PaO₂ (kPa)	10.0 (1.8)	10.2 (1.9)	
PaCO ₂ (mm Hg)	6.1(1.1)	6.4 (1.2)	
LEP	0.34 (0.23)	0.36 (0.31)	
Body-mass index	21.6 (3.6)	21.5 (3.1)	
Mean sleep SaO₂	92·7% (4·0)	91.6% (7.6)	
% sleep SaO₂ <90%	27·2% (40·0)	22.9% (36.9)	
Total sleep time (min)	201 (114)	273 (116)	
REM sleep	5.3% (6.5)	11·9% (9·3)	

Bourke SC, et al. Lancet Neurol 2006

Improvement in Survival and Quality of Life by NIV in Patients with ALS

ALS: amyotrophic lateral sclerosis

Bourke SC, et al. Lancet Neurol 2006

38 y/o Male with Baker's Muscular Dystrophy and Nocturnal Dyspnea

Sleep Studies Nocturnal Hypoxemia NIV Support

NIPPV in Neuromuscular Disease and Chest Wall disease

- Improving nocturnal and diurnal arterial blood gas
- Prolonging the survival in patients with daytime hypercapnia

NIV for OHS

Pathophysiology of Obesity Hypoventilation Syndrome (OHS)

Masa JF, et al. Eur Respir Rev 2019

Obesity Hypoventilation Syndrome (OHS, = Pickwickian syndrome)

- Definition
 - − Obesity: $BMI \ge 30 \text{ kg/m}^2$
 - Chronic hypoventilation: daytime $PaCO_2 \ge 45 \text{ mmHg}$
 - Sleep breathing disorder: OSA or sleep hypoventilation
 - Excluding severe obstructive lung disease, kyphoscoliosis, etc..
- Primary features
 - Obesity
 - Hypercapnia during wakefulness
- Possible co-existing features
 - Hypoxemia
 - Pulmonary hypertension
 - Obstructive sleep apnea

Pickwickian Syndrome -- 1956

Fat boy in "The Pickwick Papers"

Clinical features

- Marked obesity
- Somnolence
- Twitching
- Cyanosis
- Periodic respiration
- Polycythemia, secondary
- Right ventricular
 hypertrophy
- Right ventricular failure

Improvement after Weight Loss

Change in Lung Function

Change in Arterial Blood Gas

69

Comorbidities in OHS

Conditions	Prevalence, %	
Hypertension	61-79	
Heart failure	21-32	
Pulmonary hypertension	59-88	
Type 2 DM	30-32	
Asthma	18-24	
Erythorcytosis	8-15	

Mokhlesi B, et al. Chest 2007

Poor Prognosis of OHS

Nowbar S, et al. Am J Med 2004

Treatment of OHA

PAP for Obesity-related Respiratory Failure

Masa JF, et al. Eur Respir Rev 2019

Improvement by NIV

Table 3 Baseline values and changes in the ESS score, health-related quality of life test results and weight

	Baseline, mean (SD)		Intra-group differences, mean (95% CI)		p Value of inter-group differences	
	NIV	Control	NIV	Control	Unadjusted	Adjusted
ESS	7.7 (5.5)	8.5 (4.2)	-2.9 (-4.1 to -1.7)‡	-1.2 (-2.2 to -0.2)*	0.038	0.021
FOSQ	72 (22)	75 (19)	4.4 (-1.7 to 10.5)	-2.7 (-8.1 to 3.1)	NS	-
SF 36-Physical	35 (10)	37 (8)	3.1 (-0.4 to 6.6)	0.9 (-1.3 to 3.2)	NS	-
SF 36-Mental	41 (12)	43 (11)	4.1 (0 to 8.3)†	-0.9 (-3.7 to 1.8)	0.038	0.035
VAWS	45 (25)	63 (22)	18 (8.4 to 27)†	1.8 (-4.7 to 8.3)	0.006	-
Weight, kg	102 (19)	100 (17)	0.7 (-2.5 to 3.9)	−1.6 (−3.1 to −0.2)*	NS	-

Bold type indicates statistical significance.

p Values of intra-group differences (2 months - baseline): *p<0.05; †p<0.01; ‡p<0.001.

p Values of inter-group differences unadjusted or adjusted by basic adjustment (baseline values of the variable analysed and age, gender, BMI and AHI).

AHI, apnoea-hypopnoea index; BMI, body mass index; ESS, Epworth sleepiness scale; FOSQ, Functional Outcomes of Sleep Questionnaire; NIV, non-invasive ventilation; SF 36, Medical Outcome Survey Short Form 36; VAWS, visual analogue well-being scale.

Improvement by NIV

Masa JF, et al. Thorax 2016;71:899–906.

Improvement in Survival by NPPV

Nowbar S, et al. Am J Med 2004

57 y/o F, BMI: 43.7kg/m², acute ventilatory failure (pH: 7.23, PaO₂: 42 mmHg, PaCO₂: 86mmHg)

of TST with SpO2<90%: 86%

On NIV Titration

(C3) - (A2) Alalahaya - Alimata - Alimata Alimata - Alimata - A	unininalysisteralisistelisi	history and with the state	mathing	houses platent in the fait	unianternal contractions	nin with the stand of the stand	aqualistatictory and the first of the state	hanning an	annalashadi annalasi an M
	in human before the internet	while an and water and the part	homewhite here white	(hayhay) yelen aliyy yelen yelen yelen	non-	Mananananananananananananananananananan	nanalalanananalana	hanning and and an and	hhan han han han han han han han han han
(EMG1) - (EMG2)	2	2	2						
(EKG1) - (EKG2)]									ummandal maada
Heart Rate	n han hall a han han han han han han han han han h	ananin haran manalah da	ununununununununun	un kultultultultultultultultu	takan mananan mananan katak	n fi fan	ann hann ann ann ann ann ann ann ann ann	kunun hala lahahahahahahah	utu mutu papana papa Papana papana p
			ل ۱			, hurr-r		J	1011
<mark>airflow</mark> /VVVVVVV/MM	www	www.	mmm	MMM	MMMMM	MMM	MMMM	www.ww	MMMM
CHEST] MMMMMM	www	mmm	www.w	www	mmm	mm	mmm	www.ww	mm
	mmm	mmmm	mmm	MMM	mmmm	www.w	MMMM	mmmm	vmm
SaO2	+100.0 +90 <u>.0</u> +90.0		Desa		·				88.0
ETCO2 Waveform	+70.0		(ration)						Body Position
									Supine

Conclusions

- CPAP is treatment of choice in obstructive sleep apnea
- In patients with HF and CSA, NIV is effective in some patients but no improvement in survival
- NIV is effective in patients with neuromuscular or chest wall diseases and could improve survival
- NIV is effective and improves survival in patients with OHS

Questions and Comments?

Pathophysiology of SDB on Cardiovascular System

Javaheri, S. et al. J Am Coll Cardiol. 2017;69(7):841-58.

Туре	Applications	Setup requirements	Advantages	Disadvantages
Continuous positive airway pressure (CPAP)	Obstructive sleep apnea; congestive heart failure with coexisting obstructive sleep apnea; obesity-hypoventilation syndrome with coexisting obstructive sleep apnea	CPAP level	Simple to use; relatively inexpensive	Minimal or no ventilation support; preset pressures may not address variability in obstructive sleep apnea, severity with sleep stages and positional stages
AUTO-CPAP	Obstructive sleep apnea; congestive heart failure with coexisting obstructive sleep apnea; obesity-hypoventilation syndrome with coexisting obstructive sleep apnea	Range of allowable CPAP levels	Reduces number of titration studies; self-adjusting to adapt to variability in obstructive sleep apnea with sleep stages and positional changes; maybe useful for patients with ongoing weight loss such as after bariatric surgery	More expensive than fixed CPAP; may not be effective for patients with cardiopulmonary disorders or other conditions in which desaturation may be unrelated to obstructive events
Adaptive servo-ventilation (ASV)	Congestive heart failure; central sleep apnea; complex sleep apnea syndrome	Maximum and minimum inspiratory pressures; end-expiratory pressure	Adapts pressure to maintain more consistency of respiration over time	More expensive than other modes; may worsen ventilation in disease with chronic ventilator insufficiency such as COPD or restrictive thoracic disorders
Bilevel positive airway pressure (BIPAP) without backup rate	Obstructive sleep apnea with CPAP intolerance; obstructive sleep apnea with central sleep apnea; restrictive thoracic disorders; severe chronic obstructive pulmonary disease; obesity hypoventilation syndrome with coexisting obstructive sleep apnea and residual hypoventilation despite CPAP	Inspiratory and expiratory positive airway pressures	Promotes alveolar ventilation; unloads respiratory muscles; decreases the work of breathing; controls obstructive hypopneas	More expensive than CPAP; may generate central apnea
Bilevel positive airway pressure (BIPAP) with backup rate	Central sleep apnea; complex sleep apnea syndrome; worsening restrictive disorder	Inspiratory and expiratory positive airway pressure; backup rate; ratio of inspiratory time to expiratory time	Provides mandatory respiratory support during central or pseudocentral apneas	More expensive than conventional BIPAP; may generate central apnea
Average volume-assured pressure support (AVAPS)	Obesity-hypoventilation syndrome; neuromuscular disease; chronic obstructive pulmonary disease	Target tidal volume (8 ml/Kg of ideal weight); inspiratory positive airway pressure limits; respiratory rate	Ensures a delivered tidal volume; compensates for diseases progression	More expensive than other modes

Complication and/or side effect	Action
Air Leaks	Prevention of neck flexion
	Semi-recumbent positioning
	Use of chin rest
	Use of cervical collar
	Switch to controlled pressure mode
	Decrease peak inspiratory pressure and increase volume
	Optimize the interfaces(using oro-nasal mask)
Nasal Dryness, Congestion	Cold pass over
	Heated humidifier
Aerofagia, Eructation, Flatulence,	
Abdominal Discomfort	Decrease peak inspiratory pressure below 25 cmH ₂ O

NIV Settings

Pathophysiology/ Device Settings	Chronic OHS (Compensated)	Chronic COPD (Compensated)	Chronic NMD (Compensated)	
Respiratory mechanics	 † Muscle load († UA resistance, 90% OHS) Increased resistance from chest and abdominal wall ↓ FRC due to obesity (expiratory flow limitation, airway closure, V/Q mismatch) ↓ Respiratory drive (leptin resistance, 10% OHS) 	 ↑ Muscle load (↑ Lower airway resistance in COPD) ↓ Muscle capacity (diaphragm atrophy, mechanical disadvantage) 	↓ Muscle capacity ↑ Chest wall resistance	
Target volume (cc)	Target tidal volume 8 cc/kg ideal body weight	Target tidal volume 8 cc/kg ideal body weight	Target tidal volume 8 cc/kg ideal body weight	
	To adjust PS (BPAP-ST), expiratory tidal v	olume (AVAPS), or Va (iVAPS) based on ABG (pH, Pa	co_2), TcCO ₂ , or a combination	
IPAP (cm H ₂ O)	High IPAP BPAP-ST: adjust IPAP to a PS for goal tidal volume (average PS, 8-10 cm H ₂ O) VAPS: allow a large IPAP max/IPAP min difference to reach target expiratory tidal volume or Va	 High IPAP (or best tolerated) BPAP: adjust IPAP to a PS for goal tidal volume (or best tolerated) Allow large IPAP max/IPAP min difference to reach target expiratory tidal volume or Va as tolerated 	Intermediate IPAP (or best tolerated) Adjust IPAP to a PS for tidal volume goal in BPAP-ST. (average PS, 6 cm H ₂ O) Allow IPAP min at a higher baseline	
EPAP (cm H ₂ O)	High EPAP in OHS/OSA Adjust to eliminate obstructive apneas (average 8-12 cm H_2O) or snoring	Adjust to eliminate obstructive apneas if present If ineffective trigger, increase EPAP to overcome high iPEEP (first-line therapy)	Low EPAP to reduce work of breathing and improve triggering	
Respiration rate (bpm)	To adjust to goal minute ventilation based	I on ABGs or $TcCO_2$, or both		
Trigger sensitivity ^a	Respironics: Auto-Trak or flow trigger 2-3 L/min ResMed: trigger from medium to low	Respironics: Auto-Trak or flow trigger 4-5 L/min ResMed: trigger medium	High trigger sensitivity to support a weak respiratory muscular effort Respironics: flow trigger at 1-3 L/min ResMed: trigger high or very high	
Rise time (ms)	Default or slow rise time Respironics: 3 (300 ms)-6 (600 ms) ResMed: 500-900 ms	Fast rise time	Default or slow rise time Respironics: 3 (300 ms)-6 (600 ms) ResMed: 500-900 ms	
Ti (ms)	Long Ti or long Ti min to maximize tidal volume and gas exchange by († I:E) Ti/Ttot 50%	Short Ti or short Ti max to increase expiratory time and minimize iPEEP (↓ I:E) Ti/Ttot 25% in patients with BMI > 30	Long Ti or long Ti min to maximize tidal volume and gas exchange (†I:E) Ti/Ttot 50%	
Cycle Sensitivity ^a	Default or low cycle sensitivity Respironics: Auto-Trak or manual at 10%-15% of peak flow ResMed: Cycle medium to low	Default or high cycle sensitivity (early cycle) to provide a longer exhalation time (↓ I:E) Respironics: Auto-Trak or manual at 30%-50% of peak flow ResMed: Cycle sensitivity medium to high	Default or low cycle sensitivity (late cycle) to provide a longer inhalation time (maximize tidal volume and ga exchange by high I:E) Respironics: Auto-Trak or manual at 10%-15% of peak flow ResMed: Cycle low	

NIV for COPD

Scoring Criteria for Sleep-related Hypoventilation -- AASM

- Adult criteria
 - 10 min of sleep with PaCO2 (or surrogate) >55 mm Hg OR
 - 10 mm Hg increase in PaCO2 (or surrogate) during sleep (in comparison to an awake supine value) to a value exceeding 50 mm Hg for 10 min
- Pediatric criteria
 - Greater than 25% of the total sleep time as measured by either the arterial PCO2 or surrogate is spent with a PaCO2 greater than 50 mm Hg

