Potential Biomarkers for Immune Checkpoint Inhibitors

Shu-Jen Chen, Ph.D. CSO, ACT Genomics

Disclosure

• I am an employee of ACT Genomics

When it comes to biomarker for checkpoint inhibitor,

we all know PD-L1 IHC alone is not enough ...

Mutation and Neoantigen Formation

- Wild-type antigens are recognized as "self", and do not generate an immune response.
- Nonsynonymous mutations may lead to an altered peptide sequence that is ultimately presented on MHC molecules.
- This altered peptide sequence therefore produces a new or "neoantigen", which may then be recognized by the host immune system, leading to an anti-tumor immune response.

TMB and Immunotherapy Response

Greater mutation load increases the likelihood of recognition by neoantigen-reactive T cell, therefore, making the tumor more immunogenic.

Oncologist (2017) 22:631

Cancers with high TMB tend to respond better to immunothera

The NEW ENGLAND JOURNAL of MEDICINE

Tumor Mutational Burden and Response Rate to PD-1 Inhibition

We observed a significant correlation between the tumor mutational burden and the objective response rate (P<0.001). The correlation coefficient of 0.74 suggests that 55% of the differences in the objective response rate across cancer types may be explained by the tumor mutational burden. Some cancer subtypes have a response to therapy that is better than would be predicted by the tumor mutational burden (e.g., Merkel-cell carcinoma), and some have a response that is worse than would be predicted (e.g., colorectal cancer with mismatch repair proficiency). The higher-than-anticipated objective response rates for Merkel-cell carcinoma and some other cancers that have been associated with viruses suggest that the presentation of viral antigens on certain tumor types may confer an increased response rate to anti–PD-1 therapy.⁵

Median No. of Coding Somatic Mutations per MB

NEJM (2017) 377:2500

Key trials defining TMB for NSCLC checkpoint blockade benefit

Cancer	Trial and treatment	Method	Threshold defined	RR	PFS	OS	Ref.
NSCLC	KN 001 phase I/II Pembrolizumab	WES	200 mutations	59% versus 12%	NR versus 3.4 months		[40]
NSCLC	BIRCH, FIR phase II Atezolizumab	FM NGS	9.9 mut/Mb	25% versus 14%	HR 0.64	HR 0.87	[70]
NSCLC	POPLAR randomized phase II atezolizumab versus docetaxel	FM NGS	9.9 mut/Mb	20% versus 4%	7.3 versus 2.8 months	16.2 versus 8.3 months	[70]
NSCLC	MSKCC: various immunotherapies	MSKCC NGS	7.4 mut/Mb	38.6% versus 25%			[68]
NSCLC	CM 012 Nivolumab/ipilimumab	WES	158 mutations	51% versus 13%	17.1 versus 3.7 months		[62]
NSCLC	CM 568 Nivolumab/ipilimumab	FM NGS	10 mut/Mb	44% versus 12%	7.1 versus 2.6 months		[71]
NSCLC	CM 026 randomized phase III nivolumab versus chemotherapy	WES	>243 mutations	47% versus 23%	HR 0.62	HR 1.10	[42]
NSCLC	CM 227 randomized phase III nivolumab/ipilimumab versus chemotherapy	FM NGS	>10 mut/Mb	45.3% versus 24.6%	7.1 versus 3.2 months	NA	[77]

Ann Oncol (2019) 30:44

CheckMate 026 PFS Result

N Engl J Med (2017) 376:2415-2426

- High tumor mutation burden: WES ≥ 243 mutations
- Treatment: nivolumab vs chemotherapy (1st line)
- Progression-free survival was significantly longer with first-line nivolumab than with chemotherapy among patients with NSCLC and a high tumor mutational burden, <u>irrespective of PD-L1 expression</u> <u>level</u>.
- The results validate the benefit of nivolumab in NSCLC and the role of tumor mutational burden as a biomarker for patient selection.

CheckMate 227 PFS Result

N Engl J Med 2018; 378:2093-2104

- Tumor mutation burden: FM1 (≥ 10 Mt/Mb)
- Treatment: nivolumab plus ipilimumab vs chemotherapy (1st line)
- Progression-free survival was significantly longer with first-line nivolumab plus ipilimumab than with chemotherapy among patients with NSCLC and a high tumor mutational burden, <u>irrespective of PD-L1</u> <u>expression level</u>.
- The results validate the benefit of nivolumab plus ipilimumab in NSCLC and the role of tumor mutational burden as a biomarker for patient selection.

TMB in the NCCN Guideline for NSCLC

	Printed by Kien Thiam TAN on 11/28/2018 3:56:36 AM National Comprehensive Cancer Network®	A. For personal use only. Not approved for distribution. Copyright @2 NCCN Guidelines Versio Non-Small Cell Lung Cal	1018 National Comprehensive Cancer Network, Inc., All Rights Reservent 2.2019	ned. <u>NCCN Guidelines Index</u> <u>Table of Contents</u> <u>Discussion</u>	
	EMERGING E	BIOMARKERS TO IDENTIFY NOVEL TH	ERAPIES FOR PATIENTS WITH METAS	TATIC NSCLC	
		Genetic Alteration (ie, Driver event)	Available Targeted Agents with Activity Against Driver Event in Lung Cancer		
		High-level MET amplification or MET exon 14 skipping mutation	Crizotinib ¹⁻⁵		
		RET rearrangements	Cabozantinib ^{6,7} Vandetanib ⁸		
Tum	or mutational burd	len (TMB)*	Nivolumab + ipilimu Nivolumab ¹¹	umab ¹⁰	
*TMB Thei	is an evolving bior re is no consensus	narker that may be he on how to measure T	lpful in selecting patien MB.	ts for immunothera	ipy.
	 8001. ³Frampton GM, Ali SM, Rosenzweig M, Cancer Discov 2015;5:850-859. ⁴Paik PK, Drilon A, Fan PD, et al. Respr 2015;5:842-849. ⁵Awad MM, Oxnard GR, Jackman DM, and cMET overexpresion. J Clin Oncol ⁶Drilon A, Wang L, Hasanovic A, et al. F ⁷Drilon A, Rekhtman N, Arcila M, et al. C Oncol 2016;17:1653-1660. ⁸Lee SH, Lee JK, Ahn MJ, et al. Vandet 2017;28:292-297. ⁹Li BT, Shen R, Buonocore D, et al. Add ¹⁰Hellmann MD, Ciuleanu TE, Pluzansk ¹¹Carbone DP, Reck M, Paz-Ares L et a 	et al. Activation of MET via diverse exon 14 splicing a onse to MET inhibitors in patients with stage IV lung a et al. MET exon 14 mutations in non-small-cell lung c l 2016;34:721-730. Response to cabozantinib in patients with RET fusion- Cabozantinib in patients with advanced RET-rearrang anib in pretreated patients with advanced non-small c p-trastuzumab emtansine in patients with HER2 mutal i A et al. Nivolumab plus ipilimumab in lung cancer wi il. First-line nivolumab in stage IV or recurrent non-sm	alterations occurs in multiple tumor types and confers of idenocarcinomas harboring MET mutations causing ex- ancer are associated with advanced age and stage-de positive lung adenocarcinomas. Cancer Discov 2013; ed non-small-cell lung cancer: an open-label, single-ce well lung cancer-harboring RET rearrangement: a phas nt lung cancers: Results from a phase II basket trial. J th a high tumor mutational burden. N Engl J Med 2018 all-cell lung cancer. N Engl J Med 2017;376:2415–242	clinical sensitivity to MET inhibitors. xon 14 skipping. Cancer Discov ependent MET genomic amplification 3:630-635. entre, phase 2, single-arm trial. Lancet e II clinical trial. Ann Oncol Clin Oncol 2018;36:2532-2537. 3; 378:2093-2104. 26.	
	Note: All recommendations are catego Clinical Trials: NCCN believes that the Version 2.2019, 11/21/18 P National Comprehensive Cance	ry 2A unless otherwise indicated. best management of any patient with cancer is in a clini er Network, Inc. 2018, All rights reserved. The NCCN Guidelines [®] and this illustre	cal trial. Participation in clinical trials is especially encountered trials are supported by the second trials are supported by the second se	uraged. INCCN®. NSCL-H	

12

Just when we think TMB is a smooth sail ...

BMS withdraws Nivo/Ipi Application in TMB-High NSCLC

News >

BMS Withdraws Nivolumab/Ipilimumab Application in TMB-High NSCLC

Gina Columbus
Published Online:9:29 PM, Fri January 25, 2019

Tissue TMB: F1CDx panel Cutoff: 10 mut/Mb

Bristol-Myers Squibb (BMS) has announced its decision to withdraw a supplemental biologics license application (sBLA) currently with the FDA seeking frontline approval for the combination of nivolumab (Opdivo) and ipilimumab (Yervoy) for patients with advanced non–small cell lung cancer (NSCLC) with tumor mutational burden (TMB) ≥10 mutations per megabase (mut/Mb).¹ The company withdrew its application following recent discussions with the FDA.

The application was initially accepted by the

<< Back to all news

Updated CheckMate 227 data did not show significant difference in overall survival benefit between TMB-High and TMB-Low groups.

AstraZeneca's NEPTUNE trial failed to meet primary endpoint

AstraZeneca 😕

Update on the Phase III NEPTUNE trial of Imfinzi plus tremelimumab in Stage IV non-small cell lung cancer Blood TMB: GuardantOMNIpanel Cutoff: 20 mut/Mb

PUBLISHED 21 August 2019

AstraZeneca today announced final overall survival (OS) results from the Phase III NEPTUNE trial, a randomised, open-label, multi-centre, global trial of Imfinzi (durvalumab) in combination with tremelimumab, an anti-CTLA4 antibody, vs. standard-of-care (SoC) platinum-based chemotherapy in previously-untreated Stage IV (metastatic) non-small cell lung cancer NSCLC() patients. The trial was performed in an all-comers population, and the primary analysis population was patients with a high tumour mutational burden (TMB). TMB is a measurement of the number of mutations within the genome (DNA) of a tumour, and tumours with high levels of TMB may be more visible to the immune system.1,2 In the primary analysis population of patients whose blood TMB was 20 or more mutations per megabase (mut/Mb), the combination of Imfinzi and tremelimumab did not meet the primary endpoint of improving OS compared to SoC chemotherapy. The safety and tolerability profile for the combination of Imfinzi and tremelimumab was consistent with previous trials.

Adopted from Garassino WCLC 2019

Paz-Ares KN021/189/407 TMB ESMO 2019

BARCELONA ESVO

Pembrolizumab Plus Platinum-Based Chemotherapy for Metastatic NSCLC: Tissue TMB (tTMB) and Outcomes in KEYNOTE-021, 189, and 407

Luis Paz-Ares,¹ Corey J. Langer,² Silvia Novello,³ Balazs Halmos,⁴ Ying Cheng,⁵ Shirish M. Gadgeel,⁶ Rina Hui,⁷ Shunichi Sugawara,⁸ Hossein Borghaei,⁹ Razvan Cristescu,¹⁰ Deepti Aurora-Garg,¹⁰ Andrew Albright,¹⁰ Andrey Loboda,¹⁰ Julie Kobie,¹⁰ Jared Lunceford,¹⁰ Mark Ayers,¹⁰ Gregory M. Lubiniecki,¹⁰ M. Catherine Pietanza,¹⁰ Bilal Piperdi,¹⁰ Marina C. Garassino¹¹

¹Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center, Universidad Complutense and Ciberonc, Madrid, Spain; ²Abramson Cancer Center of the University of Pennsylvania, Philadelphia, PA, USA; ³University of Turin, Orbassano, Italy; ⁴Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA; ⁵Jilin Cancer Hospital, Changchun, China; ⁶Karmanos Cancer Institute, Detroit, MI, USA (currently at University of Michigan, Ann Arbor, MI, USA); ⁷Westmead Hospital and University of Sydney, Sydney, NSW, Australia; ⁸Sendai Kousei Hospital, Miyagi, Japan; ⁹Fox Chase Cancer Center, Philadelphia, PA, USA; ¹⁰Merck & Co., Inc., Kenilworth, NJ, USA; ¹¹Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy Tissue TMB: WES Cutoff: 175 mut/exome

Paz-Ares KN021/189/407 TMB ESMO 2019

Association of tTMB (log₁₀) With Efficacy

	KEYNOTE-021 C and G		KEYNC)TE-189	KEYNOTE-407		
Nominal P Value ^a	Pembro + Chemo (n = 44)	Chemo Alone (n = 26)	Pembro + Chemo (n = 207)	Placebo+ Chemo (n = 86)	Pembro + Chemo (n = 143)	Placebo+ Chemo (n = 169)	
ORR	0.180	0.279	0.072	0.434	0.393	0.086	
PFS	0.187	0.409	0.075	0.055	0.052	0.560	
OS	0.081	0.475	0.174	0.856	0.160	0.818	

No association between tTMB (continuous, log_{10} -transformed) and efficacy for pembrolizumab + chemotherapy or chemotherapy ± placebo in any study based on α = 0.05 significance level

*P were values calculated using the Wald test and are one-sided for pembro + chemo (a priori hypothesis that tTMB was positively associated with improved outcomes for pembro + chemo) and two-sided for chemo alone and placebo + chemo (no a priori hypothesis regarding direction of the association between tTMB and outcomes). Data cutoffdates: Dec 1, 2017 (KEYNOTE-021); Sep 21, 2018 (KEYNOTE-189); May 9, 2019 (KEYNOTE-407).

Just when we think TMB is totally busted ...

BARCELONA ESVO

Association Between Tissue TMB and Clinical Outcomes with Pembrolizumab Monotherapy in PD-L1-Positive Advanced NSCLC in the KEYNOTE-010 and 042 Trials

Roy S. Herbst¹, Gilberto Lopes², Dariusz M. Kowalski³, Makoto Nishio⁴; Yi-long Wu⁵, Gilberto de Castro Jr⁶, Paul Baas⁷, Dong-Wan Kim⁸, Matthew A. Gubens⁹, Razvan Cristescu¹⁰, Deepti Aurora-Garg¹⁰, Andrew Albright¹⁰, Mark Ayers¹⁰, Andrey Loboda¹⁰, Jared Lunceford¹⁰, Julie Kobie¹⁰, Gregory Lubiniecki¹⁰, M. Catherine Pietanza¹⁰, Bilal Piperdi¹⁰, Tony SK Mok¹¹

¹Yale University School of Medicine, Yale Cancer Center, New Haven, CT, USA; ²Sylvester Comprehensive Cancer Center at the University of Miami, Miami, FL, USA; ³The Maria Sklodowska Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland; ⁴Department of Thoracic Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan; ⁵Guandong Lung Cancer Institute, Guangdong General Hospital, and Guangdong Academy of Medical Sciences, Guangdong, China; ⁶Instituto do Cancer do Estado de Sao Paulo, Sao Paulo, Brazil; ⁷Netherlands Cancer Institute, Amsterdam, Netherlands; ⁸Seoul National, University Hospital, Seoul, Republic of Korea; ⁹University of California, San Francisco, CA, USA; ¹⁰Merck &Co., Inc, Kenilworth, NJ, USA; ¹¹State Key Laboratory of Translational Oncology, Chinese University of Hong Kong, Shatin, Hong Kong, China

Tissue TMB: WES Cutoff: 175 mut/exome

Herbst KN010/042 ESMO 2019

tTMB is associated with Efficacy of Pembro but not Chemo

Association of tTMB (log₁₀) With Efficacy (KEYNOTE-010^a)

Nominal <i>P</i> Value ^b	Pembro (n = 164)	Chemo (n = 89)
os	0.006 (one-sided)	0.410 (two-sided)
PFS	0.001 (one-sided)	0.579 (two-sided)
ORR	0.009 (one-sided)	0.330 (two-sided)

tTMB was associated with outcomes for pembro as a continuous variable but not with chemo based on α = 0.05 significance level and AUROC analysis

^aAll patients were PD-L1-positive (TPS ≥1%). ^bWald test. *P* values are one-sided for pembro as the a priori hypothesis was that tTMB was positively associated with improved outcomes of pembro. *P* values are two-sided for placebo because there was no a priori hypothesis regarding the direction of the association between tTMB and outcomes of chemo. TMB was assessed as a continuous, log₁₀-transformed variable. Data cutoffdate: Mar 16, 2018.

Herbst KN010/042 ESMO 2019

tTMB is associated with Efficacy of Pembro but not Chemo

Herbst KN010/042 ESMO 2019

Association of tTMB (log₁₀) With Efficacy (KEYNOTE-042^a)

Nominal <i>P</i> Value ^b	Pembro (n = 414)	Chemo (n = 379)
OS	<0.001 (one-sided)	0.060 (two-sided) ^c
PFS	<0.001 (one-sided)	0.174 (two-sided) ^c
ORR	<0.001 (one-sided)	0.035 (two-sided)

tTMB was associated with outcomes for pembro as a continuous variable but not chemo in general, based on α = 0.05 significance level and AUROC

^aAll patients were PD-L1-positive (TPS ≥1%). ^bWald test. *P* values are one-sided for pembro as the a priori hypothesis was that tTMB was positively associated with improved outcomes of pembro. *P* values are two-sided for placebo as there was no a priori hypothesis regarding the direction of association between tTMB and outcomes of chemo. TMB was assessed as a continuous, log₁₀-transformed variable. ^ctTMB showed negative directions of association with OS and PFS in the chemo arm. Data cutoff date: Sep 4, 2018. ROC Curves of ORR for tTMB

Association of tTMB with Pembro Efficacy in KN-158

Marabelle KN158 TMB ESMO 2019

Association of Tumor Mutational Burden with Outcomes in Patients with Select Advanced Solid Tumors Treated with Pembrolizumab in KEYNOTE-158

Aurélien Marabelle,¹ Marwan Fakih,² Juanita Lopez,³ Manisha Shah,⁴ Ronnie Shapira-Frommer,⁵ Kazuhiko Nakagawa,⁶ Hyun Cheol Chung,⁷ Hedy Kindler,⁸ Jose A. Lopez-Martin,⁹ Wilson H. Miller, Jr.,¹⁰ Antoine Italiano,¹¹ Steven Kao,¹² Sarina Piha-Paul,¹³ Jean-Pierre Delord,¹⁴ Robert McWilliams,¹⁵ Deepti Aurora-Garg,¹⁶ Menghui Chen,¹⁶ Fan Jin,¹⁶ Kevin Norwood,¹⁶ Yung-Jue Bang¹⁷

¹Gustave Roussy, INSERM U1015, Villejuif, France; ²City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ³The Royal Marsden Foundation Trust and the Institute of Cancer Research, London, UK; ⁴Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; ⁵Sheba Medical Center, Ramat Gan, Israel; ⁶Kindai University Faculty of Medicine, Osaka, Japan; ⁷Yonsei Cancer Center and Yonsei University College of Medicine, Seoul, South Korea; ⁸University of Chicago, Chicago, IL, USA; ⁹12 de Octubre University Hospital & Research Institute (i+12), Madrid, Spain; ¹⁰Jewish General Hospital and McGill University, Montréal, QC, Canada; ¹¹Institut Bergonié, Bordeaux, France; ¹²Chris O'Brien Lifehouse, Sydney, NSW, Australia; ¹³University of Texas MD Anderson Cancer Center, Houston, TX, USA; ¹⁴Institut Claudius Regaud IUCT-Oncopole, Toulouse, France; ¹⁵Mayo Clinic, Rochester, MN, USA; ¹⁶Merck & Co., Inc., Kenilworth, NJ, USA; ¹⁷Seoul National University College of Medicine, Seoul, South Korea

Tissue TMB: WES Cutoff: 175 mut/exome

esmo.org

"The 14 MSI-H tumors were endometrial (n = 10), cervical (n = 2), thyroid (n = 1), and salivary (n = 1). Data cutoff date: December 6, 2018.

CheckMate 227 Part 1 data presented in ESMO 2019

CheckMate 227 Part 1: NIVO + IPI in 1L NSCLC

OS for NIVO + IPI vs Chemo by Tumor PD-L1 Expression, TMB Status, and Combined Subgroups in All Randomized Patients

		Median OS	S, months		
		NIVO + IPI n = 583	Chemo n = 583	HR	HR (95% CI)
Randomize	d groups			Stratified	Stratified
	All randomized (N = 1166)	17.1	13.9	0.73	—
PD-L1	PD-L1 < 1% (n = 373)	17.2	12.2	0.62	
	PD-L1 ≥ 1% (n = 793)	17.1	14.9	0.79 ^a	
Additional e	exploratory subgroups analyses ^{b,c}			Unstratified	Unstratified
	1–49% (n = 396)	15.1	15.1	0.94	_
PD-L1	≥ 50% (n = 397)	21.2	14.0	0.70	
TMB ^d	low, < 10 (n = 380)	16.2	12.6	0.75	
(mut/Mb)	high, ≥ 10 (n = 299)	23.0	16.4	0.68	
				0.25	0.5 1

 No consistent correlation was observed between survival outcomes with NIVO + IPI vs chemo and PD-L1 or TMB alone or in combination¹

^aStratified HR (97.72% CI); ^bPatients were not stratified by TMB or PD-L1 ≥ or < 50% – subgroup analyses therefore may be impacted by imbalances and should be interpreted with caution; ^cNot controlled by randomization; ^dUnstratified HR for NIVO + IPI vs chemo in TMB-evaluable (n = 679) and non-evaluable (n = 487) patients was 0.74 (95% CI, 0.61–0.88) and 0.74 (95% CI, 0.60–0.92), respectively. ¹Hellmann MD, et al. N Engl J Med 2019. doi: www.nejm.org/doi/full/10.1056/NEJMoa1910231. 2019 Sept 28 [Epub ahead of print].

19

What's going on with TMB?

Not all TMB assays have the same performance

Partners of TMB Harmonization Program

Quality Assessment Service

for Pathology, Berlin, Germany

Diagnostic

- Foundation Medicine, Inc.
- Illumina, Inc.
- NEO New Oncology, AG
- QIAGEN, NV
- Thermo Fisher Scientific, Inc

Academic

- Charité Berlin
- LMU Munich
- Technical University Munich
- University Hospital Cologne
- University Hospital Dresden
- University Hospital Erlangen
- University Hospital Halle (Saale)
- University Hospital Heidelberg
- University Hospital Regensburg
- University Hospital Zurich

Pharmaceutical

- Bristol-Myers Squibb Company, Inc.
- F. Hoffmann-La Roche, AG
- · Merck Sharp & Dohme, Ltd
- German Cancer Consortium (DKTK)
- Institute for Hematopathology, Hamburg

Diagnostic Partner	Panel Name	Gene No	Size (Mb)	Status
ACT Genomics	ACTOnco	440	1.12	LDT
AstraZeneca	AZ600	607	1.72	LDT
Caris Life Sciences	SureSelect XT	592	1.40	LDT
Foundation Medicine	FoundationOne CDx	324	0.80	IVD -CDX
Guardant Health	GuardantOMNI	500	1.00	LDT
Illumina	TSO500	523	1.33	LDT
MSKCC	MSK-IMPACT	468	1.14	IVD
NeoGenomics	NeoTYPE	372	1.03	LDT
Personal Genome Diagnostics	PGDx elio	507	1.33	LDT
QIAGEN	QIAseq TMB	486	1.33	LDT
Thermo Fisher Scientific	Oncomine TML	409	1.20	LDT

Phase 1: In silico analysis

- Data set: TCGA pan-cancer data set (MC3)
- WES of 4134 samples from 32 cancer types
- WES TMB determined by uniformed method
- Each diagnostic partner uses their gene panel and analysis algorithm to predict TMB for each sample
- Compare the panel-derived TMB to WES-derived TMB for correlation
- Calculate panel-derived TMB data for sensitivity, specificity & precision for TMB cut-off at 8, 10, 12, 14, 16, 18 & 20
- Blinded data analyzed by NCI

Association between WES-TMB and Panel-TMB

*Data presented in Society for Immunotherapy of Cancer 2018

In silico assessment of variation in TMB quantification across diagnostic platforms: Phase 1 of the Friends of Cancer Research Harmonization Project,

Variability of Panel-TMB vs WES-TMB

*Data presented in Society for Immunotherapy of Cancer 2018

In silico assessment of variation in TMB quantification across diagnostic platforms: Phase 1 of the Friends of Cancer Research Harmonization Project,

Impact of Panel-TMB Performance on cutoff

34

Impact of Panel-TMB Performance

Impact of Panel-TMB Performance on cutoff

Impact of Panel-TMB Performance

Cutoff matters too ...

Using to 20% TMB as the cutoff for Checkpoint Inhibitor Predictor

	No. of patients		Cutoff	P-value
All samples in cohort	1,662	⊦∎₁	-	1.59×10^{-6}
Cancer type				
Bladder	214	┝──■──┤	17.6	0.040
Breast	45	} 	5.9	0.605
ER+	24	├ ─── ─ ─┤──┤	6.8	0.287
ER-	21	F	4.4	0.731
Unknown primary	90	┠───■──┼┤	14.2	0.155
Colorectal	110	┠──────┤	52.2	0.031
Esophagogastric	126	┠──■─┤┤	8.8	0.221
Glioma	117	⊢⊣≡ ⊸1	5.9	0.465
Head and neck	138	┝──■──┤│	10.3	7.42×10^{-3}
Melanoma	321	├ ─ ■─┤	30.7	0.067
Non-small cell lung	350	┝╼═╾┥	13.8	2.30×10^{-4}
Renal cell carcinoma	151	⊢	5.9	0.569
Drug class				
Combo	260	├──₩ ──┤	-	0.018
CTLA4	146	├──■ ──┤ │	-	1.89×10^{-3}
PD-1/PDL-1	1,256	⊦∎┤	-	6.95×10^{-4}
		0.12 0.25 0.50 1.0 2.0 4.0		

<--- Better overall survival-------Worse overall survival--->

Fig. 2 | Effect of nonsynonymous mutational load on overall survival after ICI treatment, by cancer subtype and drug class. Forest plot for all patients in the identified cohort or individual cancer subtypes. Indicated are the number of patients and HR comparing overall survival after ICI in patients in the highest twentieth-percentile TMB within each histology. Bars represent the 95% CI. The cutoff defining the top 20% of normalized mutational burden from MSK-IMPACT for each cancer type is shown, as well as the two-sided log-rank *P* value for the comparison of high and low mutational burden survival curves. ER, estrogen receptor. All cancer types in analysis are displayed.

Samstein et al. Nat Gen. 2019

Article

In-house Implementation of Tumor Mutational Burden Testing to Predict Durable Clinical Benefit in Non-small Cell Lung Cancer and Melanoma Patients

Simon Heeke ^{1,2,3,4}, Jonathan Benzaquen ^{1,2,5}, Elodie Long-Mira ^{1,2,3,4}, Benoit Audelan ^{1,6}, Virginie Lespinet ^{1,3}, Olivier Bordone ^{1,3}, Salomé Lalvée ^{1,3}, Katia Zahaf ^{1,3}, Michel Poudenx ^{1,7}, Olivier Humbert ^{1,8}, Henri Montaudié ^{1,4,9}, Pierre-Michel Dugourd ^{1,9}, Madleen Chassang ^{1,10}, Thierry Passeron ^{1,4,9,11}, Hervé Delingette ^{1,4,6}, Charles-Hugo Marquette ^{1,2,3,4,5}, Véronique Hofman ^{1,2,3,4}, Albrecht Stenzinger ^{12,13}, Marius Ilié ^{1,2,3,4} and Paul Hofman ^{1,2,3,4,*}

Tissue TMB

Oncomine TML panel Cutoff: 9.4 mut/Mb

F1Cdx panel Cutoff: 15 mut/mb

Cancers (2019) 11:1271

Progression free survival computed for NSCLC using panel testing

Note: Patients were treated with ICI monotherapy in either a first- or second line manner

Cancers (2019) 11:1271

Prevalence of tTMB ≥175 and <175 mut/exome

CheckMate 227 Part 1 data presented in ESMO 2019

CheckMate 227 Part 1: NIVO + IPI in 1L NSCLC

OS for NIVO + IPI vs Chemo by Tumor PD-L1 Expression, TMB Status, and Combined Subgroups in All Randomized Patients

	Median OS	S, months		
	NIVO + IPI n = 583	Chemo n = 583	HR	HR (95% CI)
Randomized groups			Stratified	Stratified
All randomized (N = 1166)	17.1	13.9	0.73	
PD-L1 PD-L1 < 1% (n = 373)	17.2	12.2	0.62	
PD-L1 ≥ 1% (n = 793)	17.1	14.9	0.79 ^a	
Additional exploratory subgroups analyses ^{b,c}			Unstratified	Unstratified
1–49% (n = 396)	15.1	15.1	0.94	_
≥ 50% (n = 397)	21.2	14.0	0.70	
TMB ^d 679 low, < 10 (n = 380) 56%	16.2	12.6	0.75	
(mut/Mb) <mark>(58%)</mark> high, ≥ 10 (n = 299) <mark>44%</mark>	23.0	16.4	0.68	
			0.25	0.5 1
				NIVO + IPI

 No consistent correlation was observed between survival outcomes with NIVO + IPI vs chemo and PD-L1 or TMB alone or in combination¹

^aStratified HR (97.72% CI); ^bPatients were not stratified by TMB or PD-L1 ≥ or < 50% – subgroup analyses therefore may be impacted by imbalances and should be interpreted with caution; ^cNot controlled by randomization; ^dUnstratified HR for NIVO + IPI vs chemo in TMB-evaluable (n = 679) and non-evaluable (n = 487) patients was 0.74 (95% CI, 0.61–0.88) and 0.74 (95% CI, 0.60–0.92), respectively. ¹Hellmann MD, et al. N Engl J Med 2019. doi: www.nejm.org/doi/full/10.1056/NEJMoa1910231. 2019 Sept 28 [Epub ahead of print].

19

Additional consideration ...

STK11 deficiency confers resistance to checkpoint blockade

Α

- STK11 aka LKB1 gene
- STK11/LKB1 comutations are associated with inferior ORR with checkpoint blockade in KRASmutant NSCLC

45

STK11 deficiency confers resistance to checkpoint blockade

 STK11/LKB1 genetic alterations are associated with shorter PFS and OS with checkpoint blockade among KRAS-mutant NSCLC

STK11 deficiency confers resistance to checkpoint blockade

 STK11/LKB1 genetic alterations affect response and outcome independently of PD-L1 status (all patients PD-L1+ve by 22C3 pharmDx assay)

A. Progression-free survival

	loglik	Chisq	df	p-value
Null model	-107.38			
PD-L1	-107.36	0.0356	1	0.850374
STK11	-102.08	10.5654	1	0.001152
PD-L1 STK11 interaction	-102.08	0.4896	1	0.484087

<u>PD-L1 ≥ 50% group:</u> HR 0.14 (95% CI, 0.04 - 0.5), P= 0.0005, log-rank test

<u>PD-L1 <50% group:</u> HR 0.27 (95% CI, 0.08 - 0.94), P=0.0278, log-rank test

B. Overall survival

	loglik	Chisq	df	p-value
Null model	-36.765			
PD-L1	-36.765	0.0515	1	0.8204261
STK11	-30.502	12.5266	1	0.0004012
PD-L1 STK11 interaction	-30.358	0.2883	1	0.5913080

<u>PD-L1 ≥ 50% group:</u> HR 0.11 (95% CI, 0.015 - 0.78), P= 0.0075, log-rank test

<u>PD-L1 <50% group:</u> HR 0.05 (95% CI, 0.004 - 0.49), P=0.0278, log-rank test

One more thing ...

Hyper-progressive disease upon checkpoint inhibitor treatment

TMB in the NCCN Guideline for NSCLC (Sep. 2019)

NCCN National Comprehensive Cancer Network®	NCCN Guidelines Version 7.2019 Non-Small Cell Lung Cancer		NCCN Guidelines Index Table of Contents Discussion	
EMERGING E	BIOMARKERS TO IDENTIFY NOVEL TH	ERAPIES FOR PATIENTS WITH METAST	ATIC NSCLC	
	Genetic Alteration (ie, Driver event)	Available Targeted Agents with Activity Against Driver Event in Lung Cancer		
	High-level <i>MET</i> amplification or <i>MET</i> exon 14 skipping mutation	Crizotinib ¹⁻⁵		
	<i>RET</i> rearrangements	Cabozantinib ^{6,7} Vandetanib ⁸		
L	ERBB2 (HER2) mutations	Ado-trastuzumab emtansine ⁹		
Tumor mutational burde	en (TMB)*	Nivolumab + ipilimun Nivolumab ¹¹	nab ¹⁰	
*TMB is an evolving biom There is no consensus of 4Paik PK, Drilon A, Fan PD, et al. Respondent 2015;5:842-849. 5Awad MM, Oxnard GR, Jackman DM, et and cMET overexpresion. J Clin Oncol 6Drilon A, Wang L, Hasanovic A, et al. R 7Drilon A, Rekhtman N, Arcila M, et al. C Oncol 2016;17:1653-1660. 8Lee SH, Lee JK, Ahn MJ, et al. Vandeta 2017;28:292-297. 9Li BT, Shen R, Buonocore D, et al. Ado 10Hellmann MD, Ciuleanu TE, Pluzansk 11Carbone DP, Reck M, Paz-Ares L et al Note: All recommendations are category Clinical Trials: NCCN believes that the be	arker that may be help on how to measure TM onse to MET inhibitors in patients with stage IV lung a et al. MET exon 14 mutations in non-small-cell lung of 2016;34:721-730. Lesponse to cabozantinib in patients with RET fusion- Cabozantinib in patients with advanced RET-rearrang anib in pretreated patients with advanced non-small of -trastuzumab emtansine in patients with HER2 muta i A et al. Nivolumab plus ipilimumab in lung cancer w I. First-line nivolumab plus ipilimumab in lung cancer w I. First-line nivolumab in stage IV or recurrent non-small 24 unless otherwise indicated.	building selecting patients B. adenocarcinomas harboring MET mutations causing ex ancer are associated with advanced age and stage-dep positive lung adenocarcinomas. Cancer Discov 2013; 3 ed non-small-cell lung cancer: an open-label, single-ce cell lung cancer-harboring RET rearrangement: a phase the lung cancers: Results from a phase II basket trial. J of the a high tumor mutational burden. N Engl J Med 2018 hall-cell lung cancer. N Engl J Med 2017;376:2415–242	on 14 skipping. Cancer Discov pendent MET genomic amplification 3:630-635. ntre, phase 2, single-arm trial. Lancet a II clinical trial. Ann Oncol Clin Oncol 2018;36:2532-2537. ; 378:2093-2104. 6.	yy.

• PD-L1 staining

- IHC-based
- Companion diagnostics for some indications, complimentary for others
- Microsatellite instability (MSI) or mismatch repair deficiency (MMRd)
 - PCR- or sequencing-based microsatellite assay
 - IHC or sequencing of MMR genes (MLH1, MSH6, MSH6 & PMS2)
- Tumor mutational burden (TMB)
 - A measure of the total number of somatic mutations per million bases of coding sequence in a tumor genome
 - WES or panel sequencing
- Tumor microenvironment assessment
 - Identification of T-cell inflamed or "hot" tumors
 - mRNA- or protein-based assays

Biomarkers for immune checkpoint inhibitors

	Factor	Association with favourable clinical outcome	Validated in phase III clinical trial?	Predictive versus prognosticª	Cancer type	Tissue type for biomarker assessment ^b	Possible assay type for biomarker assessment
*	Tumour mutation burden	Positive	Yes	Predictive	Multiple cancer types	Blood or tumour tissue	NGS WES or targeted gene panel sequencing
*	PDL1 expression	Positive	Yes	Predictive	Multiple cancer types	Tumour tissue	Immunohistochemistry
*	Copy number variation	Negative	TBD	Prognostic, predictive or both	Multiple cancer types	Tumour tissue	NGS WES or targeted gene panel sequencing
*	HLA class I diversity	Positive	TBD	Predictive	Melanoma and NSCLC	Blood	NGS WES or PCR-based typing
	LOH at HLA class I alleles	Negative	TBD	Predictive	Melanoma	Tumour tissue	TBD
	T cell repertoire clonality change	Positive	TBD	Predictive	Melanoma	Tumour tissue or blood	TBD
*	T cell-inflamed microenvironment	Positive	TBD	Prognostic, predictive or both	Multiple cancer types	Tumour tissue	NGS RNA-seq or immunostaining
	SERPINB3 or SERPINB4 mutations	Positive	TBD	Predictive	Melanoma	Tumour tissue	NGS WES
	Gut microbial diversity	Positive	TBD	Predictive	Melanoma	Oral or gut	PCR or NGS
	Specific gut microbial species	Positive or negative	TBD	Predictive	Melanoma	Oral or gut	PCR or NGS
	TGF β expression	Negative	TBD	Predictive	Colon cancer and urothelial cancer	Tumour tissue	NGS RNA-seq or expression panel
	Mutations in the β -catenin pathway	Negative	TBD	Predictive	Melanoma	Tumour tissue or blood	NGS WES, targeted gene panel sequencing or RNA-seq
	JAK2 mutations (rare) ^c	Negative	TBD	Predictive	Melanoma	Tumour tissue or blood	NGS WES or targeted gene panel sequencing
	B2M mutations (rare) ^c	Negative	TBD	Predictive	Melanoma	Tumour tissue or blood	NGS WES or targeted gene panel sequencing
*	STK11 mutations (common)	Negative	TBD	Predictive	NSCLC	Tumour tissue or blood	NGS WES or targeted gene panel sequencing

* Evidence in NSCLC

HLA, human leukocyte antigen; LOH, loss of heterozygosity; NSCLC, non-small-cell lung cancer; NGS, next-generation sequencing; PDL1, programmed cell death 1 ligand 1; RNA-seq, RNA sequencing; TBD, to be determined; TGF β , transforming growth factor- β ; WES, whole-exome sequencing, ^aPredictive refers to a given biomarker that has an effect dependent on the immune checkpoint inhibitor therapy, and prognostic refers to a biomarker that has a specific effect independent of the therapy. ^bBlood detection of mutations refers to cell-free DNA analysis. ^cJAK2 and B2M mutations are controversial. Responses have been seen in patients with these mutations.

Havel et al. Nat Rev Cancer 2019 ⁵²

To TMB or Not to TMB?

• WES-TMB

- Most studies show positive correlation to treatment response
- Cutoff should be 175 mutations per exome or higher

• tTMB

- Mixed positive and negative data
- Positive data typically associated with higher cutoff
- Cutoff depends on the panel and algorithm
- TMB harmonization program should help to align individual panel-TMB

• bTMB

- Not much data available on bTMB
- Failure of NEPTUNE left the utility of bTMB in doubt
- Other factors
 - Mutations in resistance pathway (e.g. STK11) should be taken into consideration

Thank you

