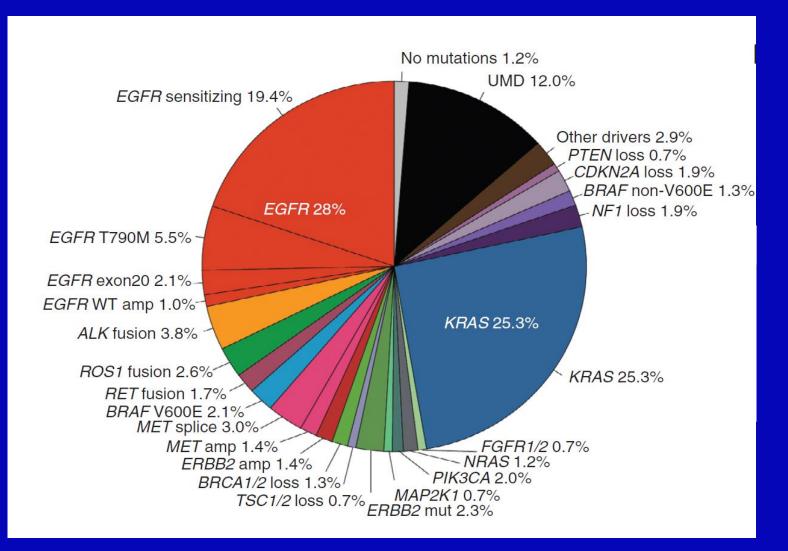
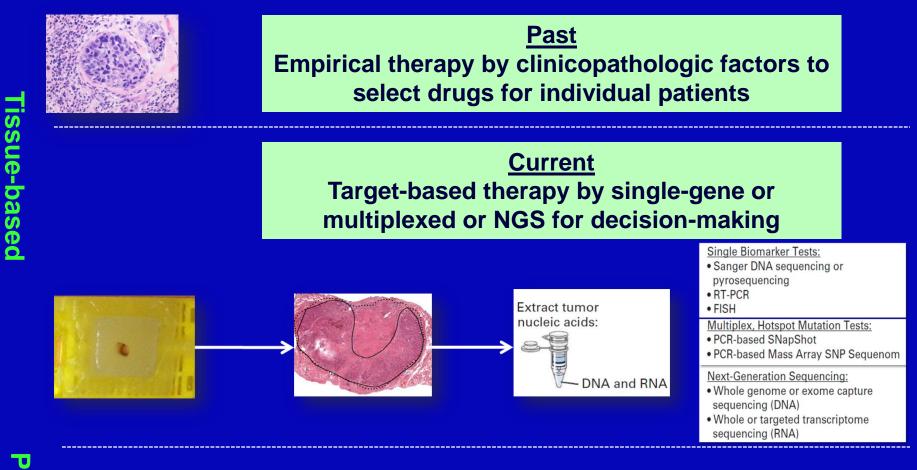
Application of Liquid Biopsy in Lung Cancer


Byoung Chul Cho, M.D., Ph.D. Yonsei Cancer Center

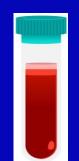
YONSEI CANCER CENTER SEVERANCE HOSPITAL

Potentially Actionable Oncogenic Drivers in Lung Adenocarcinoma

Jordan, et al. Cancer Discov 2017


Expanding List of Guideline Recommendations for Genomic Testing in NSCLC

NCCN guideline has advocated <u>broad molecular profiling</u> as a part of the standard diagnostic evaluation for advanced NSCLC with the goal of identifying driver mutations for which effective therapies or clinical trials are available

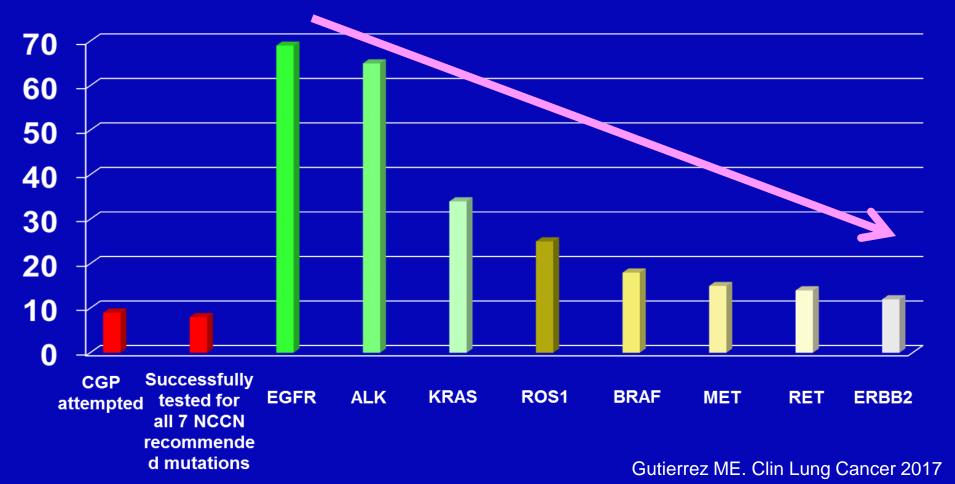

Genomic alteration	Available targeted agents with activity against driver event in lung cancer
EGFR mutation	Osimertinib, erlotinib, gefitinib, afatinib, dacomitinib
ALK fusion	Alectinib, brigatinib, ceritinib, crizotinib, lorlatinib
ROS1 fusion	Crizotinib, Ceritinib
BRAF V600E mutation	Dabrafenib+ trametinib, vemurafenib
HER2 mutation	Ado-trastuzumab emtansine, afatinib
MET amplification/mutation	Crizotinib
RET fusion	Cabozantinib, vandetanib, LOXO-292
NTRK fusion	Larotrectinib, entrectinib
Tumor mutational burden	Nivoluamb+ ipilimumab, nivolumab

NCCN Clinical Guideline. NSCLC v3 2019

Evolution of Biomarker Test in NSCLC: Past, Current, Tomorrow

Plasma-based

<u>Tomorrow</u> Comprehensive genomic profiling by NGS of plasma ctDNA for decision-making

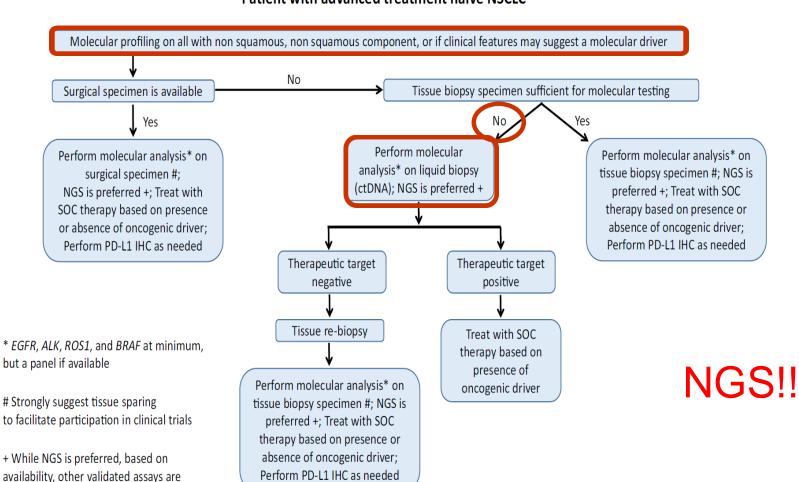

Modified from Li T. JCO 2013

Barriers to Tissue Genomic Testing for Community Oncology Practice

- Insufficient tumor tissue
- Tumor location
- Long turnaround times
- Test reimbursement
- Patient co-morbidities
- Patient harm from the repeat biopsies (bleeding, pneumothorax)

Genomic Profiling in advanced NSCLC: In reality...

- Diagnostic accuracy is suboptimal ranging from 34-88%
- <u>~10%</u> of patients are NOT tested because of insufficient tumor tissue
- <u>~30%</u> of failure rate for NGS in routine pathological samples



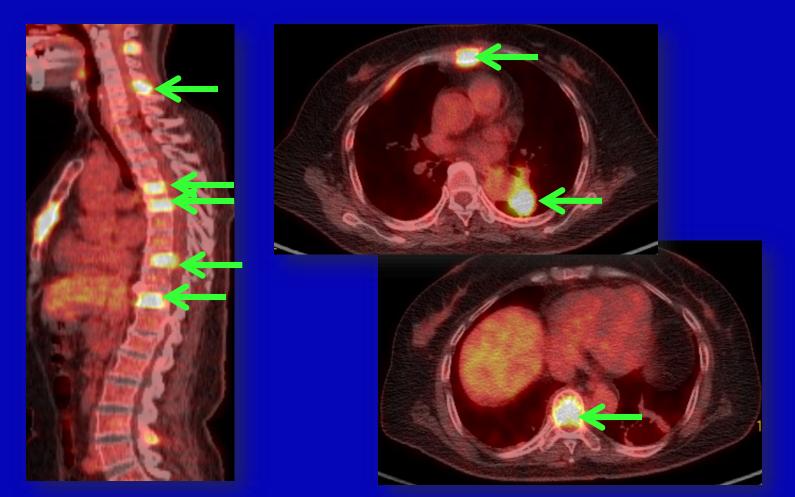
Clinical Application of Liquid Biopsy

Identification of recurrence Monitoring of tumor evolution EP300 RET amp 50 mutations NF1 **EP30** ARIDIA TERT amp PIK3CA PRF1 del. MSH2 3q amp. CDKN LMO2 amp. TP53 CDKN2A **Identification of** Identification of therapeutic targets resistance mechanism Tumor 69% **Baseline:** SPTBN1 90% 90% Progrression: TCACGCAGCTCATGCCCTTCGGCTGCC **T790M** C797S **Tumor mutation burden Response monitoring** (Immunotherapy) 0.9 0.8 (n = 160) 0.7 -Median PES algore 0.6 0.58 97.5% CI 041 081 P = 0.00025 204-(%) ⁶⁰ 0.3 SHI 40 1.v PES = 43% Non-detectable 0.2 Detectable 0.1 Censored natients 20 1-y PFS = 13% 12 18 21 15 24 Time from randomization (months) 12 15 mhor of on

n-detectable 208 198 174 147 111 86 41 13 3 0 ectable 128 114 84 62 44 34 20 6 0 0 No.at.rink Months Nov-ipi 139 85 66 55 36 24 Chemo 160 103 51 17 7 6

Liquid Biopsy for Advanced NSCLC: Consensus Statement from the IASLC (Rolfo C. JTO 2018)

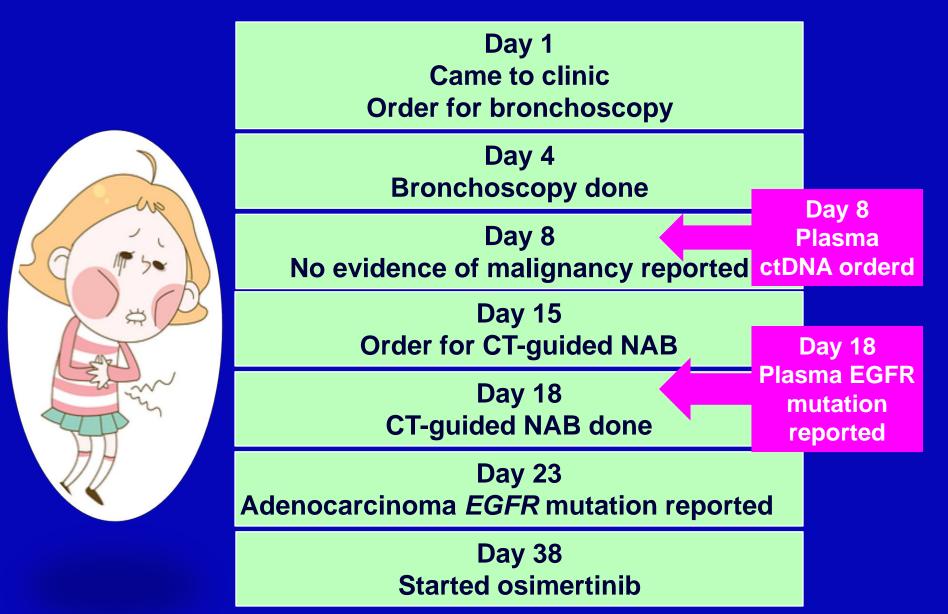
acceptable

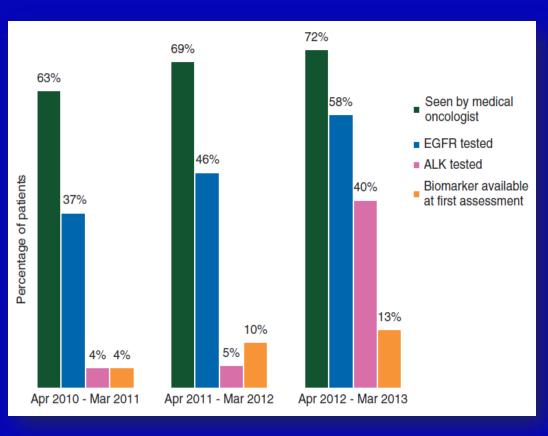

Patient with advanced treatment naive NSCLC

Can Plasma NGS Imporove Detection of Actionable Mutations?

	Number	Success rate of tissue NGS	Plasma NGS	Concordance rate or PPA	X	Improved detection rate
Aggarwal C, et al. JAMA Oncol 2018	323	62%	Guardant360	81.3%		15.3%
Leighl NB et al. CCR 2019	282	-	Guardant360	>98.2%		48%
Itotani R, et al ESMO 2019	363	67%	Guardant360	75%	X	~14%
PPA, positive percer	nt agreeme	nt				

Case #1: 68-year-old lady

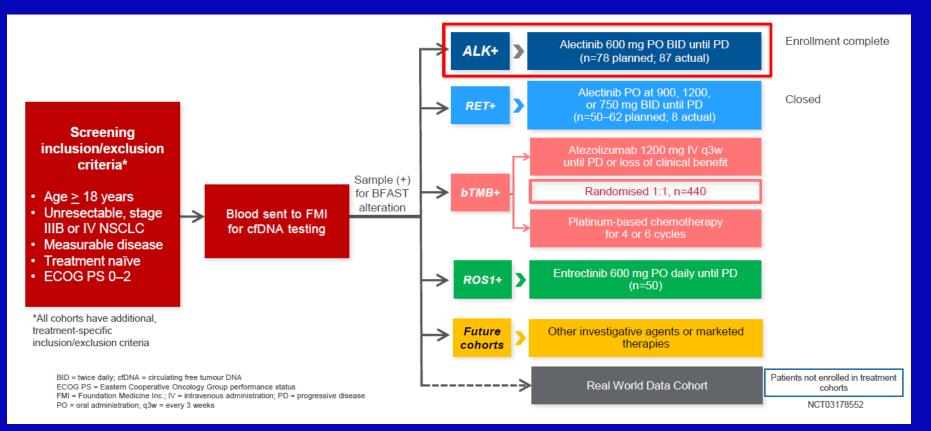

- Lifetime never smoker and housewife
- Present with cough and severe chest/back pain


What would you do first?

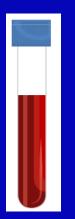
- 1) Only tumor biopsy with reflex single-gene assays of EGFR/ALK/ROS1 (turnaround time 1 weeks)
- Only tumor biopsy with NGS on tissue for broader molecular profiling (turnaround time 5 weeks)
- 3) Tumor and liquid biopsy simultaneously
- 4) Liquid biopsy first

Tissue is an issue...?

Concurrent tissue and liquid biopsy should have been ordered....

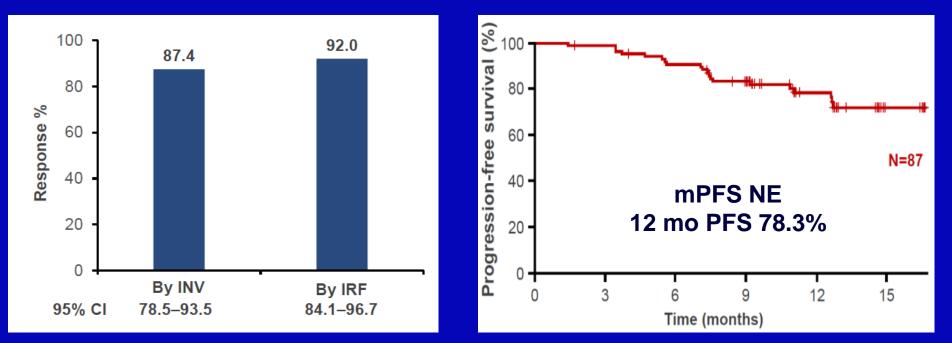


- Only 21% of patients with
 biomarker testing had
 results available at their
 initial oncology
 consultation
- 13% underwent repeat biopsy for molecular testing
- Delay treatment decision/initiation for advanced NSCLC


Lim C. Ann Oncol 2015

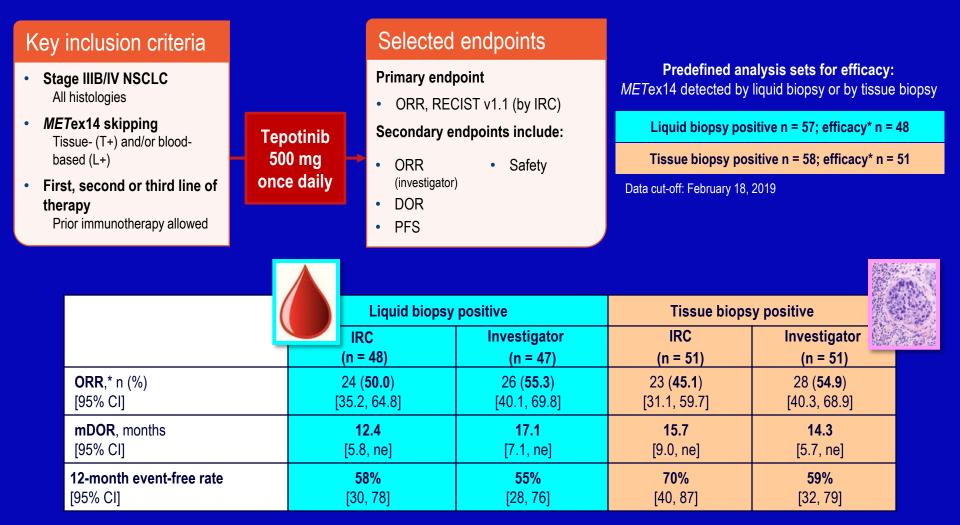
Can we start targeted therapy based on plasma result?

BFAST: blood-first screening trial in treatment-naive NSCLC


Gadgeel SM. ESMO 2019

Positive ctDNA result represents sufficient evidence to initiate targeted treatment

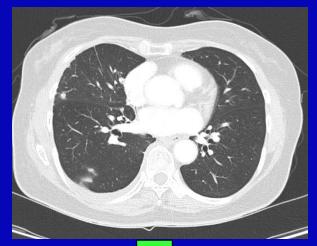
ORR*



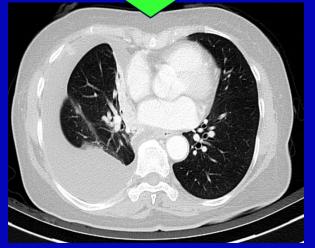
*Efficacy similar to those from ALEX¹ (VENTANA D5F3)

¹Peters S. NEJM 2017

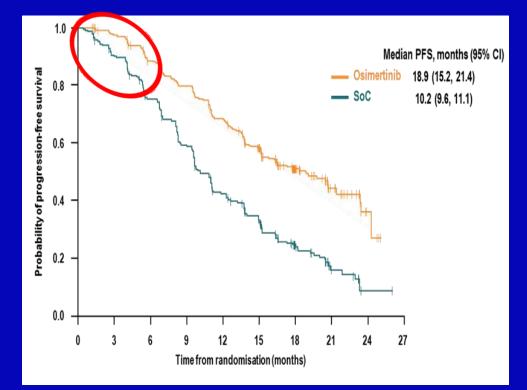
VISION: Single-arm, Phase II trial of tepotinib in patients with NSCLC harboring MET exon14 skipping mutation (Guardant360)



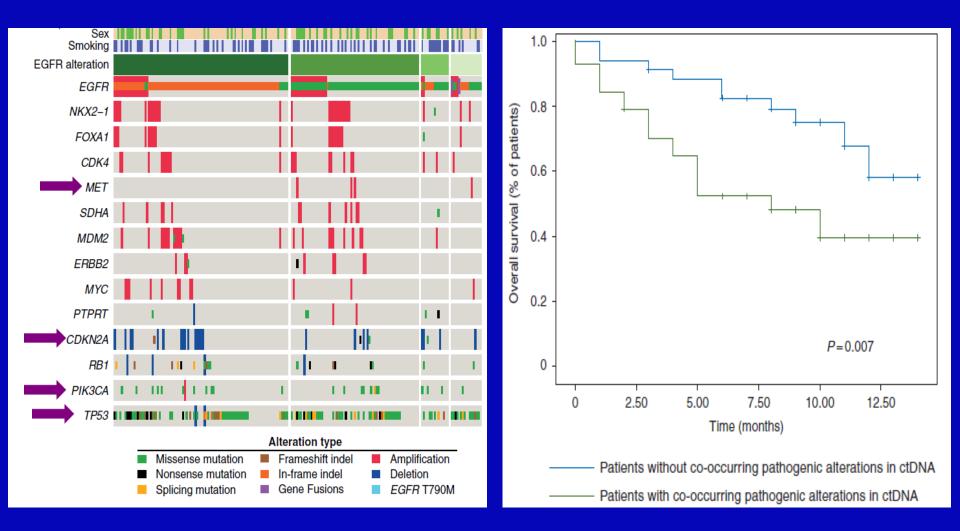
*ORR: confirmed complete response or partial response; †mDOR for first-line treatment not mature at time of analysis.


CI, confidence interval; IRC, Independent Review Committee; mDOR, median duration of response; ne, not estimable; ORR, objective response rate

Park K. ESMO Asia 2019


Not all EGFR mutant patients respond well to EGFR-TKI

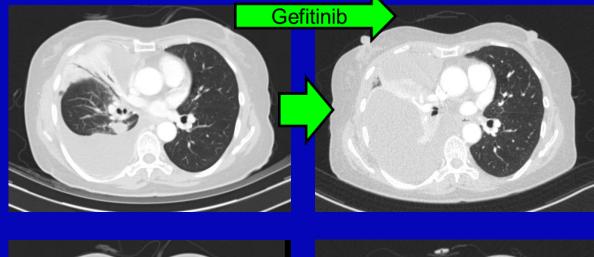
Gefitinib 1 mo

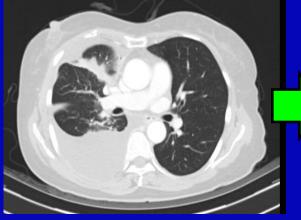

FLAURA

22% of patients in SoC arm did not achieve responses (5% had PD)

Ramalingam SS NEJM 2017

Concurrent Genomic Alterations in ctDNA May Provide Prognostic Information




Zugazagoitia J. Ann Oncol 2019

Case #2: 63 year-old Lady with dyspnea and chest pain

- Never smoker
- VATS RLL pleural biopsy
- Metastatic adenocarcinoma (TTF1+) cT2aN0M1a
- EGFR exon 19 deletion by PANAMutyper[™]
- Started gefitinib (No doubt!!)

Not all EGFR Mutations Created Equally

	00003	v2 i ia3iii	u	
		G719X	▦	Not detected
	Ex19Del 🔠 Mutant(9,9	Mutant(9,98)		
	EGFR mutation	S 768I	▦	Not detected
Whole blood	[plasma	T790M	▦	Not detected
	cfDNA] E	Ex20Ins	⊞	Not detected
		L858R	⊞	Not detected
		L861Q	⊞	Not detected

Cohae[®] v/2 Plasma

FoundationOne Plasma

HISTORIC PATIENT FINDINGS		TEST 1 MAF%
EGFR	● L747P	1.0%
TP53	• 1255N	0.78%

TruSight[™] Tumor 170

1. Variants of clinical significance - SNVs & Indels : GENE MUTATION TYPE VAF HGVSp HGVSc NM_005228.3:c.2239_2240delTTi EGFR Missense mutation p.L747P 18.1% NP_005219.2:p.Leu747Pro INSCO **TP53** Missense mutation 17.5% NM 000546.5:c.764T>A NP 000537.3:p.Ile255Asn

- Fusion gene : None

- Copy number variation : None

A rare point mutation in exon 19

Int J Clin Exp Pathol 2015;8(7):8603-8606 www.ijcep.com / ISSN:1936-2625/IJCEP0010373

Case Report

EGFR mutation L747P led to gefitinib resistance and accelerated liver metastases in a Chinese patient with lung adenocarcinoma

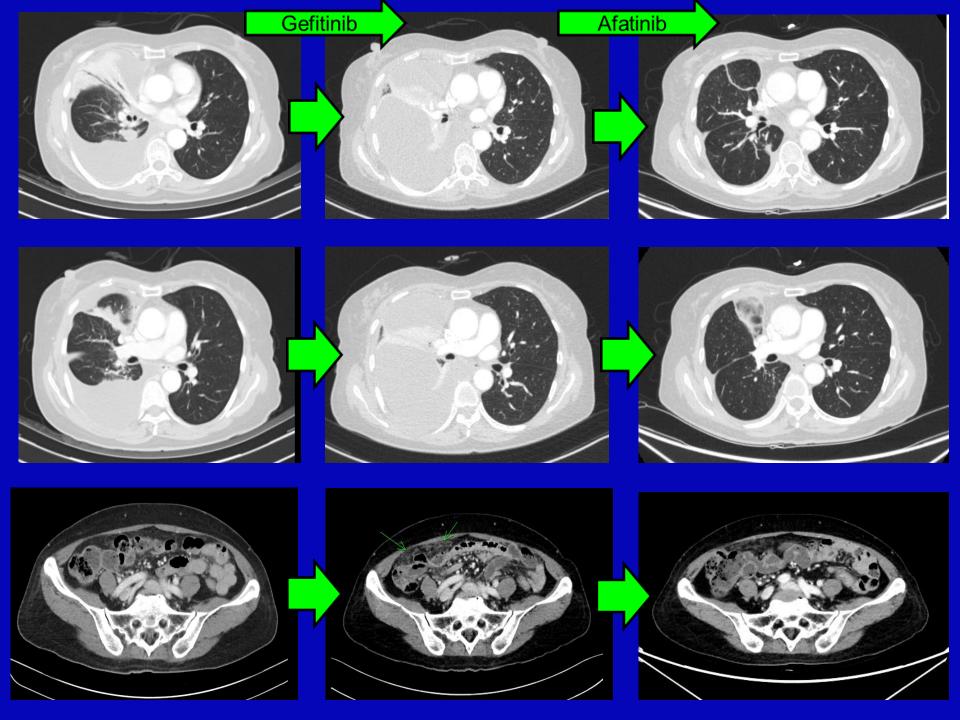
Thoracic Cancer

Thoracic Cancer ISSN 1759-7706

CASE REPORT

Non-small cell lung cancer harboring a rare *EGFR* L747P mutation showing intrinsic resistance to both gefitinib and osimertinib (AZD9291): A case report

Case Report

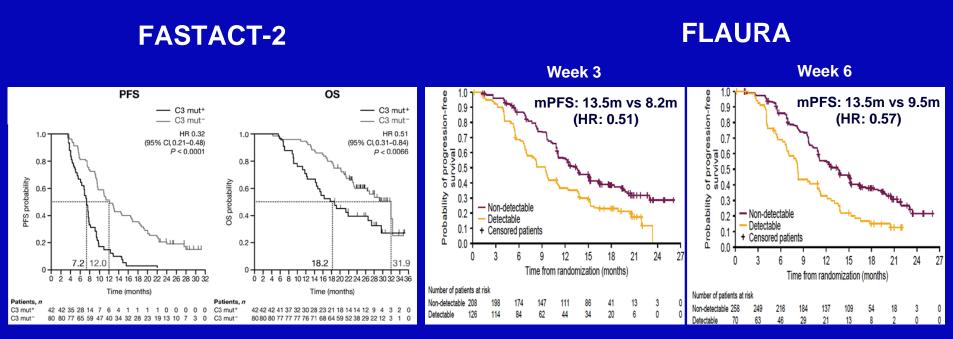

Exon 19 L747P mutation presented as a primary resistance to EGFR-TKI: a case report

Case Report

EGFR L747P mutation in one lung adenocarcinoma patient responded to afatinib treatment: a case report

Tong Zhou¹, Xiaoyue Zhou¹, Peng Li¹, Chuang Qi², Yang Ling¹

Survey of the Survey of the Survey of Survey Survey Survey Survey

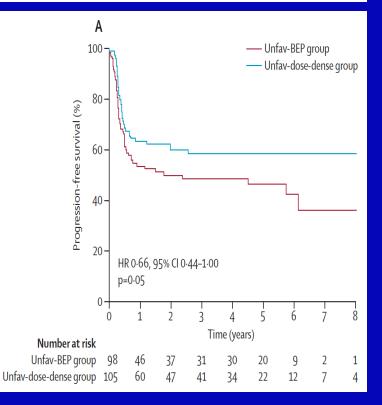

Treatment monitoring with repeated liquid biopsies

Treatment monitoring

- 1. Clearance of founder mutation
- Early detection of resistant clones prior to radiological progression

Modifying treatment1. Intensifying therapy2. Switching therapy

Early plasma ctDNA dynamics can identify poorly responding patients


Presence of EGFR mt at Cycle 3 is associated with worse PFS and OS

Presence of EGFR mt at week 3 and 6 is associated with worse PFS and lower ORR.

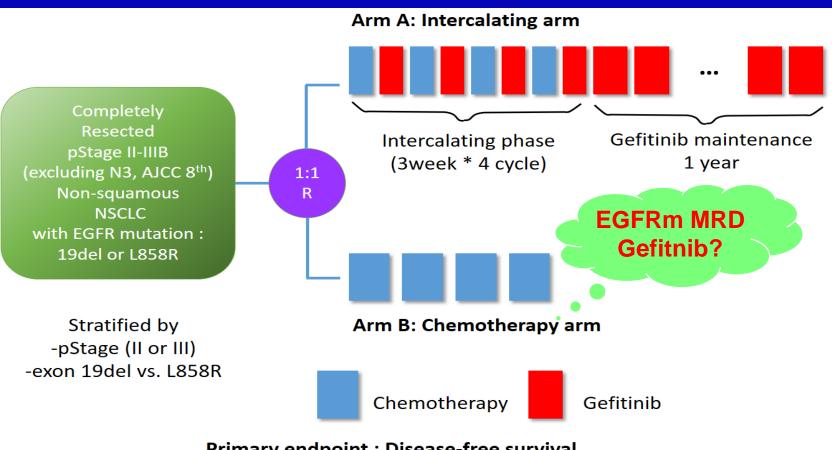
Modifying treatment at earlier timepoints enables individualization of treatment

Personalised chemotherapy based on tumour marker decline in poor prognosis germ-cell tumours (GETUG 13): a phase 3, multicentre, randomised trial

Karim Fizazi, Lance Pagliaro, Agnes Laplanche, Aude Fléchon, Josef Mardiak, Lionnel Geoffrois, Pierre Karbrat, Christine Chevreau, Remy Delva, Frederic Rolland, Christine Theodore, Guilhem Roubaud, Gwenöëlle Gravis, Jean-Christophe Eymard, Jean-Pierre Malhaire, Claude Linassier, Muriel Habibian, Anne-Laure Martin, Florence Journeau, Maria Reckova, Christopher Logothetis, Stephane Culine

Modifying therapy by integrating ctDNA dynamics Potential new paradigm EGFR mut+ Stage IV disease Osimertinib Brain met and/or T790M Plasma cfDNA for EGFR mutation at week 8 -ive +ive Osimertinib + Osimertinib chemothearpy

Recurrence Risk Assessment: ctDNA analysis to detect Minimal Residual Disease (MRD)



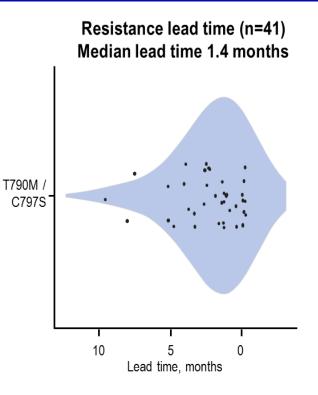
Multigene panel designed for >90% sensitivity across major cancer types

4 week Recurrence free survival (% of patients) 1.00 4wk ctDNA not detected 0.75 -0.50-**Adjuvant Rx** intensification 0.25-4wk ctDNA detected HR 4.68 (1.55 - 14.16) p = 0.003 by log-rank 0.00-12 $\dot{24}$ 18 0 6 Months

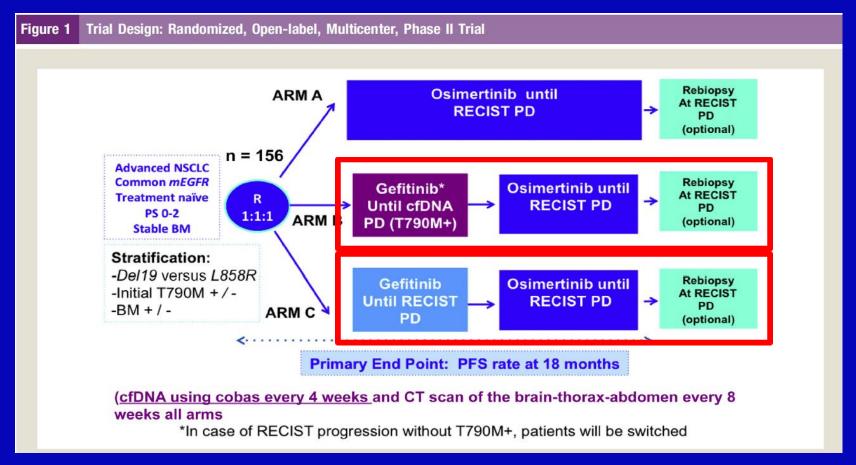
Resected early-stage NSCLC

A RAndomized PHase 3 Adjuvant gEfitinib EGFR-Mutant Non-small Cell Lung Cancer (RAPHAEL)

PI: Cho BC


Primary endpoint : Disease-free survival Secondary endpoints : Overall survival, safety & tolerability

Blood sample every 4 months (up to 3 years) during follow-up for detection of ctDNA recurrence by LUNAR assay


FLAURA ctDNA analysis: Early Detection of T790M or C797S EGFR mutation Before RECIST progression

- Acquired C797S and T790M resistance mutations were detected in 8% and 74% of patients with ctDNA PD in the osimertinib and comparator EGFR-TKI arms, respectively
- Median lead time to acquired C797S or T790M in patients with ctDNA PD and RECIST PD was 1.4 months (IQR 0.5–3.4 months)

Patients with ctDNA PD	Osimertinib (n=50)	Comparator EGFR-TKI (n=72)	Overall (n=122)
Resistance mutation detected, n (%)	4 (8%) C797S	53 (74%) T790M	57 (47%)
Median time to detection (IQR), months	16.7 (12.6–19.7)	8.4 (5.6–12.4)	8.4 (5.6–14.0)
Patients with ctDNA PD and RECIST PD	Osimertinib (n=39)	Comparator EGFR-TKI (n=67)	Overall (n=106)
		EGFR-TKI	

Modifying treatment prior to radiological progression

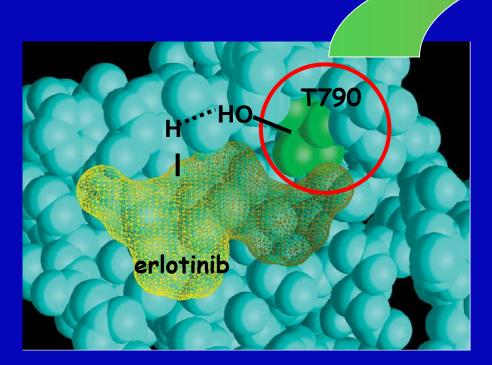
APPLE Trial: Feasibility and Activity of Osimertinib on Positive Plasma T790M in EGFR-mutant NSCLC Patients (EORTC 1613)

Remon J. Clin Lung cancer 2017

Key message: Liquid Biopsy in Treatment-naïve Patients

- Same criteria as molecular testing from tissue
 - Advanced nonsquamous NSCLC or squamous NSCLC with clinical features of a molecular driver
- Particularly recommended when tumor tissue is scarce or <u>a significant delay (> 2 weeks) is expected</u> in obtaining tumor tissue and in patients for whom invasive procedure may be contraindicated or with bone biopsy
- A negative ctDNA result should be followed up with tumor biopsy

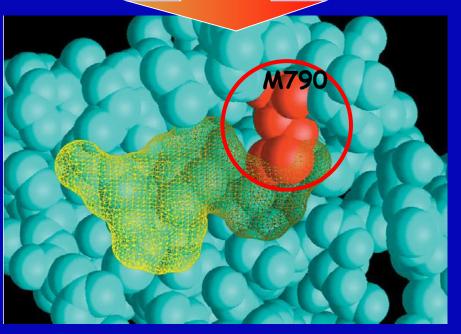
False negative liquid biopsy result (sensitivity max ~85%)


Patients should be drawn before any treatment

Liquid Biopsy for Advanced NSCLC: Consensus Statement from the IASLC (Rolfo C. JTO 2018)

Patient with NSCLC progressive or recurrent disease during treatment with TKI Liquid biopsy first !! Perform molecular analysis* on liquid biopsy (ctDNA) Targetable Targetable resistance resistance mutation absent mutation present Tissue re-biopsy Treat with SOC therapy based on presence of oncogenic driver Feasible Not Feasible Evaluate the potential benefit Perform molecular analysis* on of other therapy for marker tissue biopsy specimen #; NGS is *cobas/ddPCR for EGFR mutation unknown or best supportive preferred +; Treat with SOC NGS preferred for ALK and ROS1 therapy based on presence or care absence of oncogenic driver; # Strongly suggest tissue sparing Perform PD-L1 IHC as needed to facilitate participation in clinical trials

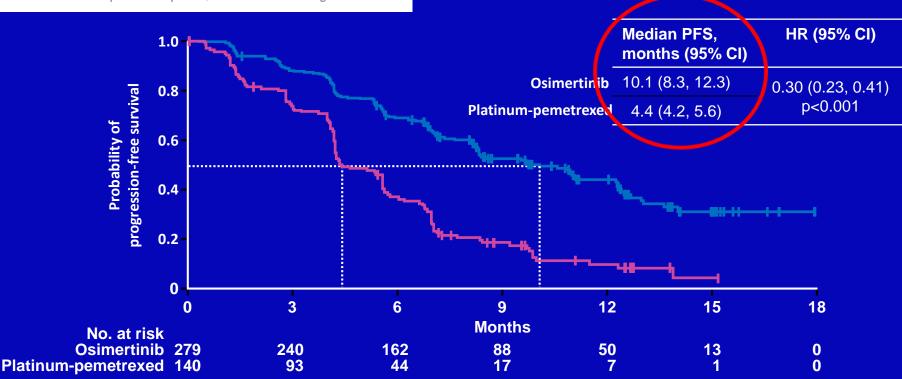
+ While NGS is preferred, based on availability, other validated assays are acceptable


T790M Gatekeeper Mutation

Erlotinib bound to EGFR

Steric hindrance inhibits binding of erlotinib to catalytic site

EGFR T790M found in <u>~50%</u> of patients who become resistant to gefitinib/erlotinib/afatinib



Why is the detection T790M important?

ORIGINAL ARTICLE

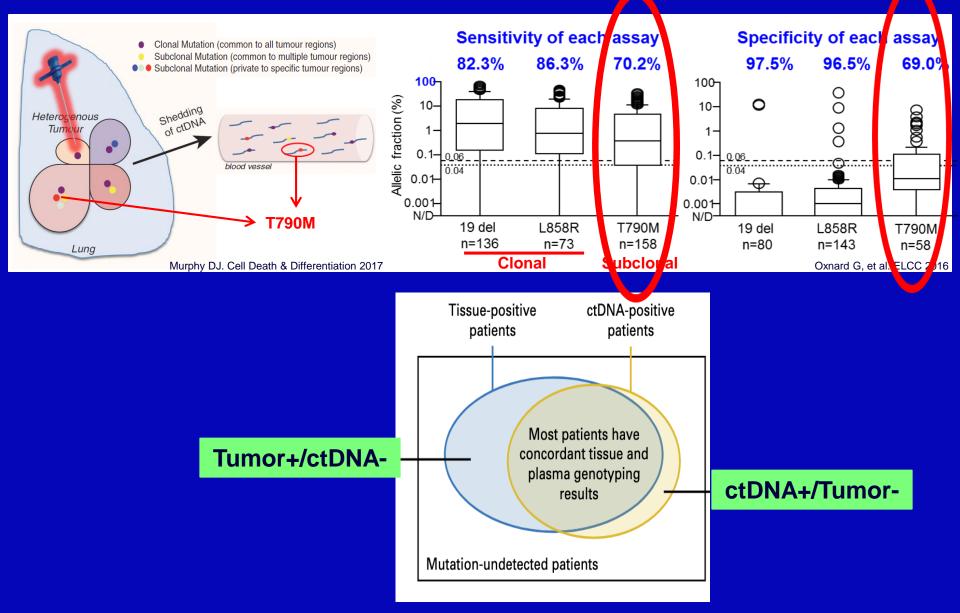
Osimertinib or Platinum–Pemetrexed in EGFR T790M–Positive Lung Cancer

T.S. Mok, Y.-L. Wu, M.-J. Ahn, M.C. Garassino, H.R. Kim, S.S. Ramalingam, F.A. Shepherd, Y. He, H. Akamatsu, W.S.M.E. Theelen, C.K. Lee, M. Sebastian, A. Templeton, H. Mann, M. Marotti, S. Ghiorghiu, and V.A. Papadimitrakopoulou, for the AURA3 Investigators* Osimertinib- the only 3G EGFR TKI approved for patients with progression after EGFR TKI and harboring T790M

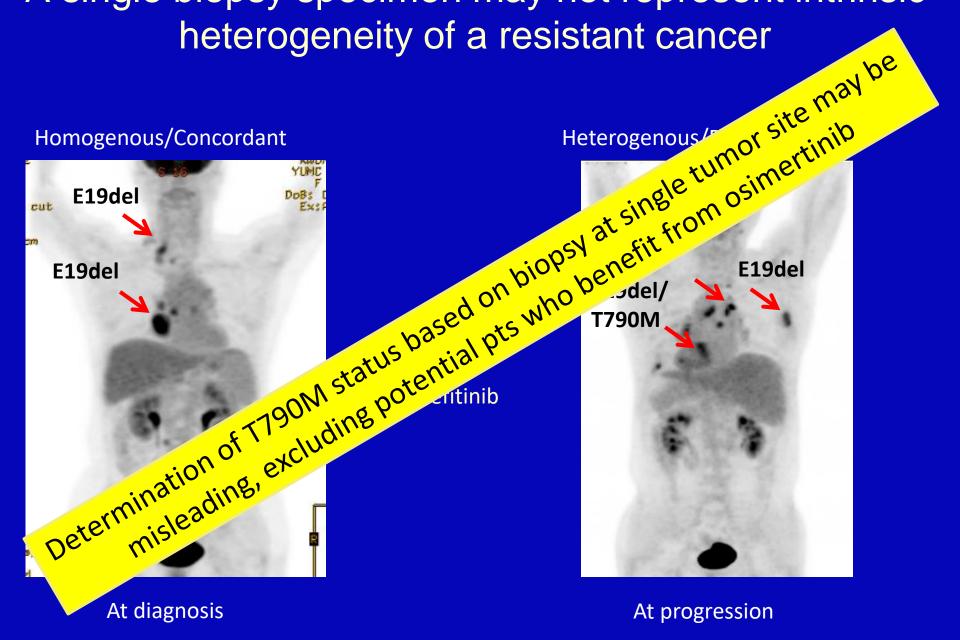
Why Should Liquid Biopsy be First in Lung Cancer Progressing during Targeted Therapy?

Biopsy feasibility (~60%¹)
Faster turnaround time 1.2 (1-4) vs. 27 days (1-146)²
HETEROGENEITY

¹Kawamura T. Cancer Sci. 2016, Hong MH. YMJ 2019; ²Sacher AG. JAMA Oncol 2016


Detecting T790M mutations in plasma

Challenges:


- Very low concentration of the mutations
- High concentration of wildtype sequences from nonmalignant tissues
- Single nucleotide difference T790M

Clonal Mutations are More likely to be Detected than Subclonal Mutations in Plasma

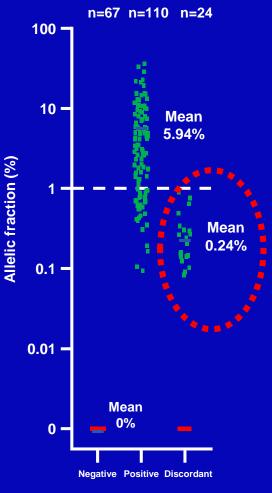
A single biopsy specimen may not represent intrinsic heterogeneity of a resistant cancer

Plasma assay performance for T790M detection using tissue test as reference

Platform	Sensitivity	Specificity	Reference
cobas	61	79	Jenkins, JTO 2017
cobas	51	77	Wu, WCLC 2016
cobas	73	67	Thress, Lung Cancer 2015
cobas	64	98	Karlovich, CCR 2016
ddPCR	77	63	Sacher, JAMA Oncol 2016
BEAMing	70	69	Oxnard, JCO 2016
BEAMing	73	50	Karlovich, CCR 2016
BEAMing	80	58	Thress, Lung Cancer 2015

- 50-77% patients can have T790M mutation status determined without an invasive procedure
- Specificity issues in plasma assay likely from tumor heterogeneity ("False-positive plasma")

Sensitivity of 3 Technologies for T790M detection (AURA 3)

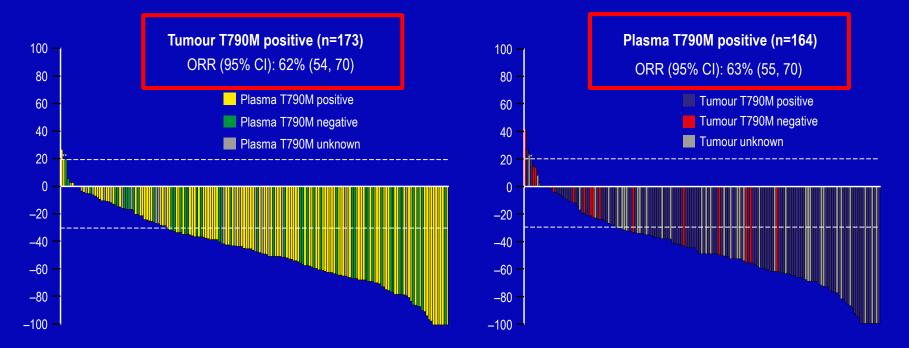

	T790M		Exon 19	deletion	L858R		
	PPA	NPA*	PPA	NPA	PPA	NPA	
AS-PCR (Cobas® v2, n=226)	51% (115/226)	NA	85% (132/155)	99% (70/71)	59% (40/68)	100% (158/158)	
ddPCR (<mark>Biodesix</mark> , n=208)	57% (118/208)	NA	72% (102/142)	100% (66/66)	69% (44/64)	99% (141/143)	
NGS (Guardant Health, n=227)	65% (148/227)	NA	81% (126/156)	99% (70/71)	62% (42/68)	98% (156/159)	

- Using the cobas tissue test as a reference, sensitivity for the detection of T790M was increased for ddPCR and NGS compared with AS-PCR
- Specificity of the tests for T790M detection could not be assessed because all patients were T790M positive by tissue test*

Population: osimertinib-dosed patients with a valid cobas tissue T790M-positive result and matched plasma samples *Specificity for the detection of T790M was not evaluable as all patients enrolled in AURA3 were T790M positive NA, not applicable; NPA, negative percent agreement (specificity); PPA, positive percent agreement (sensitivity)

T790M discordance by patient: ddPCR vs NGS

NGS: T790M (n=201)



Genotype

- 201 patients had a valid ddPCR and NGS plasma T790M test result
 - 24 patients (12%) with a discordant result (i.e. differing mutation status by ddPCR and NGS) are shown here
 - 100% of discordant samples had allelic fractions <1% in both assays
 - 19/24 (79%) of discordant samples were ddPCR negative but NGS positive

Green = NGS positive result, red = NGS negative result; population: osimertinib-dosed patients with a valid cobas tissue T790M-positive result and matched plasma samples.

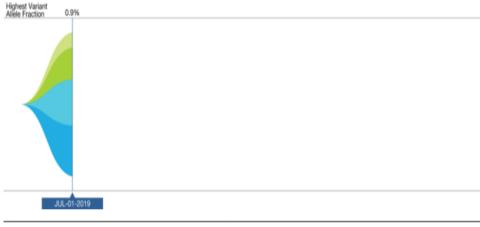
Plasma cfDNA positivity in T790M is predictive of tumor response (AURA)

		ORR	R (%)	PFS (months)		
	Platform	Plasma	Tumor	Plasma	Tumor	
AURA, AURA 2	Cobas	64	66	NR	NR	
AURA 3	Cobas	77	71	8.2	10.1	
AURA	Beaming	63	62	9.7	9.7	

Jenkins, JTO 2017; Wu, WCLC 2016; Oxnard G, JCO 2016

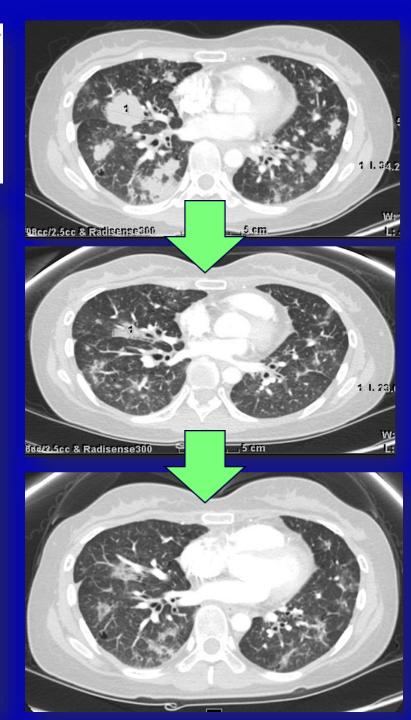
Case #2: 43 year-old never smoking woman

- Diagnosis of stage IV lung adenocarcinoma with EGFR E19del
- Gefitinib for 1 year, symptomatic disease progression at lung and brain
 - ctDNA with cobas EGFR WT
 - Bronchoscopy nondiagnostic
 - Wedge resection E19 del
- Started lazertinib (a novel thirdgeneration EGFR TKI)

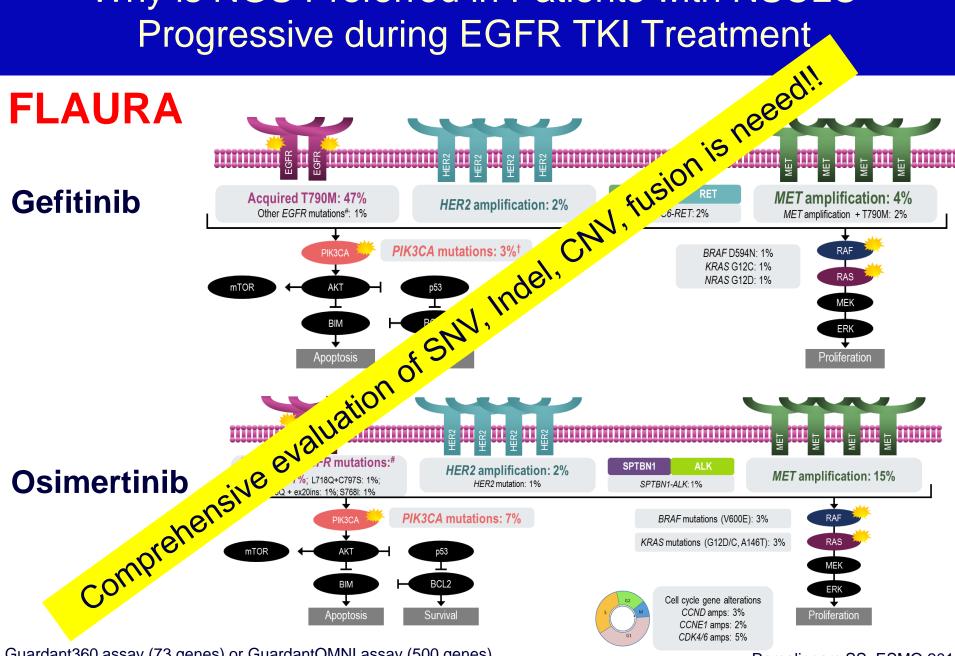

Pleural biopsy under VATS

Lazertinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: results from the dose escalation and dose expansion parts of a first-in-human, open-label, multicentre, phase 1–2 study

Myung-Ju Ahn, Ji-Youn Han, Ki Hyeong Lee, Sang-We Kim, Dong-Wan Kim, Yun-Gyoo Lee, Eun Kyung Cho, Joo-Hang Kim, Gyeong-Won Lee, Jong-Seok Lee, Young Joo Min, Jin-Soo Kim, Sung Sook Lee, Hye Ryun Kim, Min Hee Hong, Jin Seok Ahn, Jong-Mu Sun, Heung Tae Kim, Dae Ho Lee, Sohee Kim, Byoung Chul Cho


Guardant360 Tumor Response Map

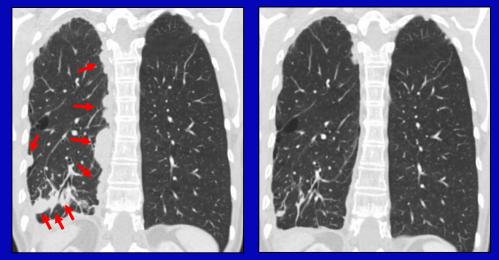
The Guardant360 Tumor Response Map illustrates the variant allele fraction (% cfDNA) of observed somatic variants at each sample submission time point. Amplifications are not plotted, and only the first and last five test dates are plotted. Please see the Physician Portal (portal.guardanthealth.com) for the Tumor Response Map with all test dates.



Alteration	% cfDNA or Amp
PIK3CA E110del	0.9%
<i>TP53</i> R248Q	0.8%
EGFR E746_A750del (Exon 19 deletion)	0.5%
EGFR T790M	0.2%

The table above annotates the variant allele fraction (% cfDNA) detected in this sample, listed in descending order.

Why is NGS Preferred in Patients with NSCLC **Progressive during EGFR TKI Treatment**


Guardant360 assay (73 genes) or GuardantOMNI assay (500 genes)

Ramalingam SS. ESMO 2018

Combination of Osimertinib and Pralsetinib (RET inhibitor) Shows Response in EGFR mutant Patients with Acquired RET Fusion

- 60-year old female with EGFR del19 NSCLC received afatinib for one year, then osimertinib for 18 months
- Biopsy post-osimertinib shows <u>CCDC6-RET fusion</u>, T790M "lost"
- Patient treated with osimertinib + pralsetinib
- Osimertinib 80mg QD; pralsetinib 200mg QDx2 weeks, then 300 mg QD

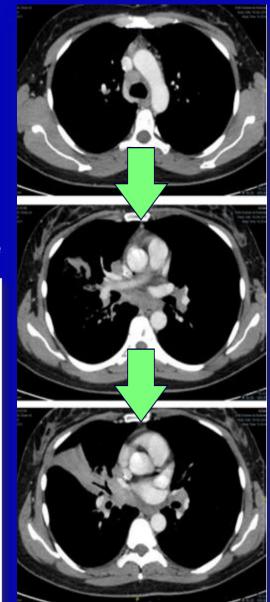
RECIST 1.1 Partial Response (-78%)

Baseline

8 weeks

Zofia Piotrowska, et al. IASLC. 2018. MA26.03

Case #3 47 year-old never smoker woman


- Stage IV lung adenocarcinoma with EGFR L858R mutation
- Afatinib for 2 years, disease progression
- Chemotherapy with gemcitabine-cisplatin
- Palliative radiotherapy at T-, L-spine
- Cobas ctDNA confirmed L858R/T790M
- Osimertinib with response for 13 months
- Symptomatic lung disease progression
- Lung rebiopsy NGS still pending
- G360 confirmed CCDC6-RET fusion as acquired resistance mechanism to osimertinib

Patient MRN: N/A | DOB: N/A | Gender: Female

PHYSICIAN

It is Real!

Receipt Date: AUG-29-2019 Receipt Date: AUG-22-2019 Collection Date: AUG-21-2019 Specimen: Blood Status: FINAL	Byoung Chui Cho Account: JNS, Ol Janssen Korea Ltd Address: 26F LS Yongsan Tower, 92 HanGang- daero YongSan-gu, Seoul, 04386, South Korea Phr. NA Fac: N/A Additional Recipient: N/A
	top ates the variant allele fraction (% of DNA) of observed somatic variants at each sample submission time point, ates the variant five test dates are plotted. Please see the Physician Portal <u>portal guardardwallh.com</u> for the Tumor
AUG-21-2019	
Alteration EGFR L858R	% cfDNA or Amp 1.0%
7P53 R280_R283delinsS	0.8%
CCDC6-RET Fusion	0.07%
The table above annotates the variant allele	fraction (% cfDNA) detected in this sample, listed in descending order.

Liquid Biopsy: NCCN Guideline & Recommendations

Key new recommendations include the inclusion of additional genes (ERBB2, MET, BRAF, KRAS and RET)... and the use of cfDNA to rule in targetable mutations when tissue is limited or hard to obtain.

- CAP/IASLC/AMP 2018 Molecular Testing Guidelines for Lung Cancer

Even for patients who are able to undergo a traditional tissue biopsy, <u>a liquid biopsy</u> may be safer, quicker and more convenient and perhaps even more informative. - 2017 ASCO Clinical Cancer Advances

Use of <u>cfDNA testing can be considered in specific clinical circumstances</u>, most notably:

- If a patient is medically unfit for invasive sampling
- In the initial diagnostic setting, if following pathologic confirmation of a NSCLC diagnosis.. <u>there is insufficient material for molecular analysis.</u> cfDNA should be used only if follow-up tissue-based analysis is planned for patients in which an oncogenic driver is not identified

- NCCN Treatment Guidelines 1.2019 Non-Small Cell Lung Cancer

Lindeman et al JTO 2018; Burstein et al. JCO 2017; NCCN Guideline, NSCLC

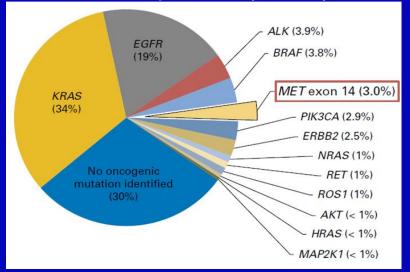
Our Experience of Guardant360 in Lung Cancer

Patients Demographics

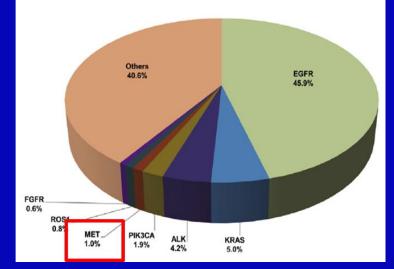
Characteristic	N=203 (%)
Ageyr Median (range)	65 (25-85)
Sex — no. (%) Male	149 (73.4%)
Smoking status — no. (%) Current or former smoker Never smoked	137 (67.5%) 66 (32.5%)
Tumor histologic type — no. (%) Adenocarcinoma Squamous cell carcinoma Others	160 (78.8%) 35 (17.2%) 8 (4.0%)
Tissue pathology mutation — no. (%) EGFR/ALK/ROS1 WT	188 (92.6%)
EGFR mutation ALK fusion ROS1 fusion	4 (2.0%) 3 (1.5%) 8 (3.9%)
Status at cfDNA NGS — no. (%) Stage IV or relapsed	195 (96.1%)
Treatment history at G360 — no. (%) Treatment naïve Post TKIs Post chemo-Immunotherapy Post cutative therapy	64 (31.5%) 1 (0.5%) 126 (62.1%) 12 (5.9%)

Patients who Became Candidates for Targeted Therapy Based on G360 Results

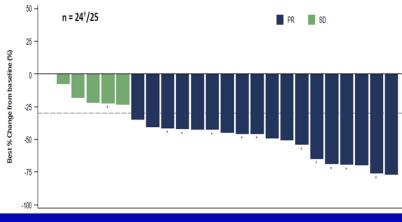
No	Actionable mutation identified	VAF (%)	Line of therapy	Previous Treatment	Treatment (context)	Best Fesponsi
1	EGFR T725M	0.8	Second-line	Pemetrexed/Cisplatin	Erlotinib (SoC)	SD
2	EGFR exon 19 del	1.0	Second-line	Pemetrexed/Cisplatin	Gefitinib (SoC)	SD
3	EGFR L858R	0.9	Third-line	Pemetrexed/Cisplatin Docetaxel	Gefitinib (SoC)	PR
4	EGFR L858R	1.2	Second-line	Keytruda	Gefitinib (SoC)	PR
5	EGFR exon 20 ins	0.09	Third-line	Pemetrexed/Cisplatin Gemcitabine/Carboplatin	JNJ-61186372 (Clinical trial)	SD
6	KIF5B-RET fusion	1.7	Second-line	Pemetrexed/Cisplatin	BLU-667 (Clinical trial)	SD
7	NCOA4-RET fusion	5.6	Second-line	Gemcitabine/Cisplatin	Loxo-292 (Clinical trial)	PR
8	ERBB2 G660D	6.2	Second-line	Pemetrexed/Cisplatin	Neratinib/Herceptin (Clinical trial)	SD


In these patients, tissue results were wild-type for actionable mutations or unavailable due to tissue insufficiency

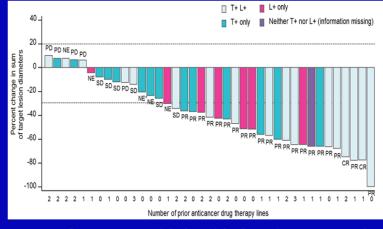
Can We Identify Actionable Mutation using Guardant 360?


	Mutation	N (%)
Level 1 FDA-approved biomarker predictive of response to an FDA-approved drug in lung cancer	EGFR ALK fusion ROS1 fusion	\$/203 (3.9%)
Level 2A standard of care biomarkers for FDA- approved drugs in lung cancer	MET amplification/Exon 14 skipping BRAF V600E RET fusion	9/203 (4.4%)
Level 2B standard of care biomarkers for FDA- approved drugs in other cancer	ERBB2 amplification BRCA 1/2 loss TSC 1/2 loss CDK 4 amplification IHD1	20.170
Level 3 alterations with promising clinical evidence for drug response but not currently standard of care in any cancer type	ERBB2 mutation EGFR exon 20 insertion FGFR 1/2 amplification PIK3CA MAP2K1 ARAF	15/203 (7.4%)

MET exon 14 skipping represents a unique subset of NSCLC


White patients (n=933)

Chinese (n=968)



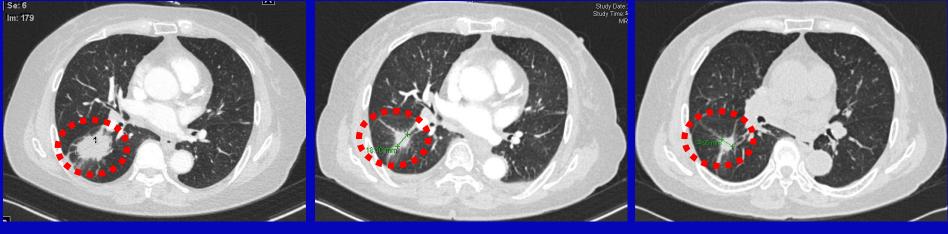
GEOMETRY MONO-1 Ph II (n=25, 1L)

ORR 72.0% (95% CI: 50.6-87.9)

VISION Ph II (n=69)

ORR 57.5% (95% CI: 40.9, 73.0)

Awad MM. JCO 2016; Liu SY. JTO 2016; Liu X. JCO 2016


Guardant360: 74 cancer-associated genes

Point Mutations, Insertions, Deletions – 74 Genes										
AKT1	ALK	APC	AR	ARAF	ARID1A	ATM	BR	4F	BRCA1	BRCA2
CCND1	CCND2	CCNE1	CDH1	CDK4	CDK6	CDK12	CDK	V2A	CTNNB1	DDR2
EGFR	ERBB2 (HER2)	ESR1	EZH2	FBXW7	FGFR1	FGFR2	FGF	R3	GATA3	GNA11
GNAQ	GNAS	HNF1A	HRAS	IDH1	IDH2	JAK2	JAł	<3	КІТ	KRAS
MAP2K1 (MEK1)	MAP2K2 (MEK2)	MAPK1 (ERK2)	MAPK3 (ERK1)	МЕТ	MLH1	MPL	MTG	DR	МҮС	NF1
NFE2L2	NOTCH1	NPM1	NRAS	NTRK1	NTRK3	PDGFRA	PIK3	CA	PTEN	PTPN11
RAF1	RB1	RET	RHEB	RHOA	RIT1	ROS1	SMA	D4	SMO	STK11
TERT [‡]	TP53	TSC1	VHL				*In	cludes 7	ERT prom	oter region
Amplifica	tions – 18	Genes								
AR*	BRAF*	CCND1*	CCND2	CCNE1	CDK4*	CDł	K6*	EGF	R	ERBB2*
FGFR1	FGFR2*	KIT*	KRAS*	MET*	MYC	PDC	GFRA*	PIKS	BCA	RAF1*
Fusions -	- 6 Genes									
ALK	FGFR2	FGFR3	RET	ROS1	NTRK1	MSI-Hig	h	Bold=	full exom	elines for trea ne sequencing ation reporte

Guardant360 reports insertion/deletion variants and amplification of MET gene

82/F Never smoker, Lung adenocarcinoma harboring MET ex14 skipping mutation

Apr 2019

May 2019

Jul 2019

Capmatinib

Same Results but Right on Time! TAT 6 weeks

TAT 10 days

	JAN-06-2019	
	Alteration	% cfDNA or Amp
	<i>TP53</i> M246I	5.4%
	MET Exon 14 Skipping SNV	4.8%
Ì	<i>STK11</i> K48fs	4.1%
	EGFR Amplification Amplifications not graphed above	Low (+) Plasma Copy Number: 2.2

Illumina TruSight[™] Tumor 170

검체 번호	성별	나이	Unit NO.	환자명	장기명/진단	검체 유형	
SS18-78809 C	남	63	8777506	서이진	LN/Lung, Metastaitc adenocarcinoma	FFPE	
의뢰의	의뢰의 소속		소속	김체의 적절성여부	검체 접수일	결과보고일	
조병철	종양내과		121	적합 (Tumor%: 10 %)	2019.03.14	2019.04.24	

■ 검사결과

1. Variants of clinical significance

MAF 14%

- Splice variant	MET	exon	14	ski	pping	1
------------------	-----	------	----	-----	-------	---

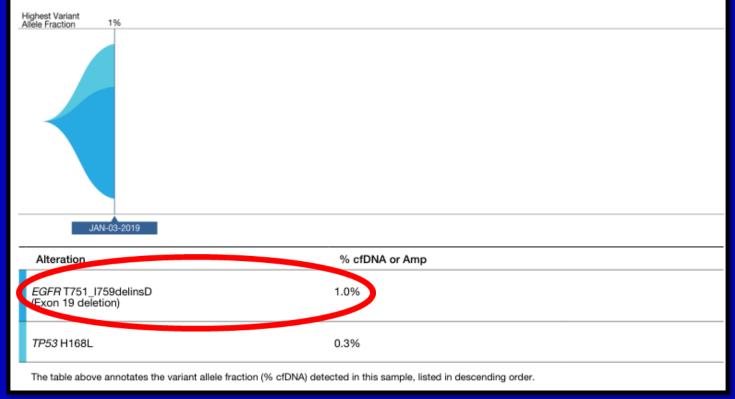
GENE	AFFECTED EXON(S)	TRANSCRIPT	BREAKPOINT START	BREAKPOINT END	SPLICE SUPPORTING READS
MET	14	ENST00000318493	chr7:116411710	chr7:116414933	1174

- SNVs & Indels

GENE	MUTATION TYPE	AA CHANGE	VAF	HGVSc	HGVSp
TP53	Missense mutation	p.M246I	3.86%	NM_000546.5:c.738G>C	NP_000537.3:p.Met246ile

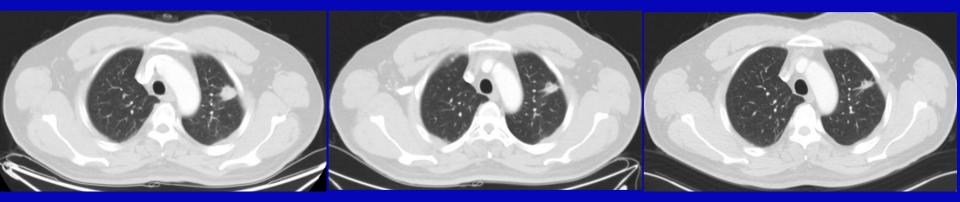
- Fusion gene : None
- Copy number variation : None

검사기관 : 세브란스병원 병리과 문자병리 검사실 서울시 서대문구 연세로 50-1 (신촌동 134) 세브란스병원 병리과 Tel: 02-2228-2625


M/48 stage IV lung adenocarcinoma

- Referred from another hospital
- Current smoker (30 PYS)
- EGFR cobas/ALK/ROS1 (-/-/-), SP263 10%
- <u>Tissue insufficient for NGS</u>
- s/p Pemetrexed/cisplatin (Apr 2018 ~ Jan 2019)
- Having progressive disease on Feb 2019
- What do you recommend to this patient?

Guardant360 Result


Guardant360 Tumor Response Map

The Guardant360 Tumor Response Map illustrates the variant allele fraction (% cfDNA) of observed somatic variants at each sample submission time point. Amplifications are not plotted, and only the first and last five test dates are plotted. Please see the Physician Portal (portal.guardanthealth.com) for the Tumor Response Map with all test dates.

Treatment course

Gefitinib 250 mg/day

Feb 2019

Mar 2019

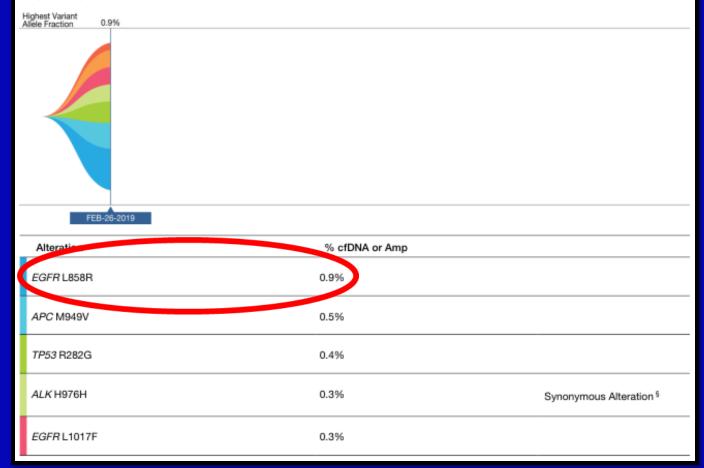
May 2019

What if this patient was not lucky enough to have Guardant360? Docetaxel, gemcitabine...... All ineffective therapies

F/69 stage IV lung adenocarcinoma

- Never smoker
- EGFR cobas WT, ALK/ROS1 (-/-), PD-L1 SP263 0%
- Oncomine comprehensive assay® : WT

No Tier I/II genetic alteration : EGFR, KRAS, BRAF, MET, PIK3CA, HRAS, NRAS, ERBB2, TSC1/2, FGFR1/2/3, ALK, RET, ROS1, NTRK1/3


Mapped Reads: 6,932,713 On Target: 98.05% Mean Depth: 2,918 Uniformity: 97.65% Total quality score: very good

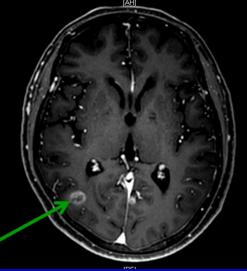
- s/p Pemetrexed/cisplatin (Oct 2018.10~Dec 2018)
- After 2 cycles of docetaxel, she had to stop the chemotherapy due to severe toxicities (referred)

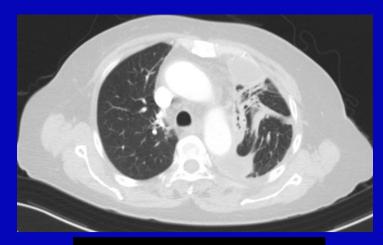
Guardant360 Result

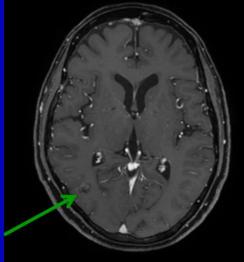
Guardant360 Tumor Response Map

The Guardant360 Tumor Response Map illustrates the variant allele fraction (% cfDNA) of observed somatic variants at each sample submission time point. Amplifications are not plotted, and only the first and last five test dates are plotted. Please see the Physician Portal (portal.guardanthealth.com) for the Tumor Response Map with all test dates.

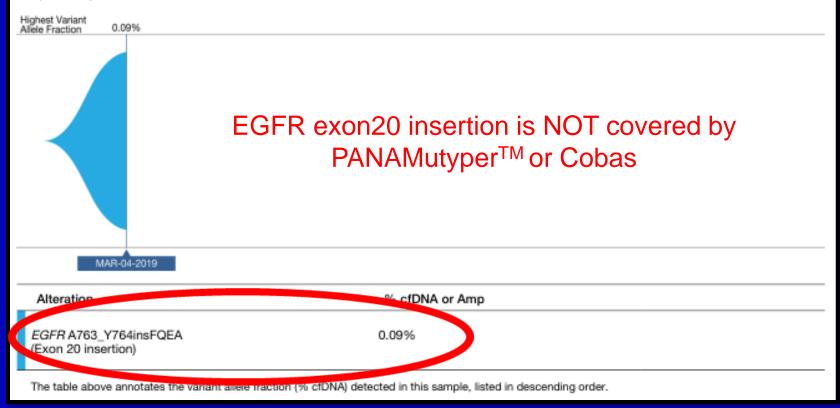
*Tumor tissue NGS may have low sensitivity in low tumor purity


Treatment course


Gefitinib 250 mg/day


Feb 2019

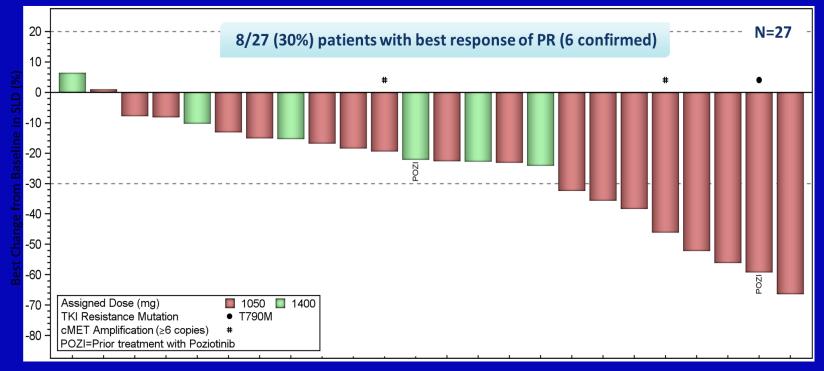
Oct 2019


M/50 stage IV lung adenocarcinoma

- Current smoker (10 PYS)
- EGFR/ALK (-/-), PD-L1 SP263 0%
- Tissue for NGS: not done
- s/p 2cycles pemetrexed/cisplatin (PD)
- s/p GKS
- s/p 2 cycles gemcitabine/carboplatine (PD)
- Referred
- What do you recommend to this patient?

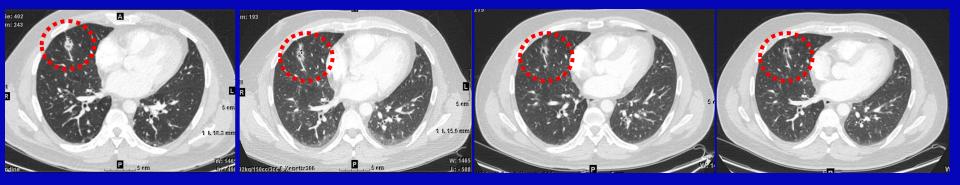
Guardant360 Result

Guardant360 Tumor Response Map


The Guardant360 Tumor Response Map illustrates the variant allele fraction (% cfDNA) of observed somatic variants at each sample submission time point. Amplifications are not plotted, and only the first and last five test dates are plotted. Please see the Physician Portal (portal.guardanthealth.com) for the Tumor Response Map with all test dates.

JNJ-61186372 (JNJ-372), an EGFR-cMet bispecific antibody, in EGFR-driven advanced non-small cell lung cancer (NSCLC)

Eric B. Haura,¹ Byoung Chul Cho,² Jong-Seok Lee,³ Ji-Youn Han,⁴ Ki Hyeong Lee,⁵ Rachel E. Sanborn,⁶ Ramaswamy Govindan,² Eun Kyung Cho,⁸ Sang-We Kim,⁹ Karen L. Reckamp,¹⁰ Joshua K. Sabari,¹¹ Catherine A. Shu,¹² Dong-Wan Kim,¹³ Jorge E. Gomez,¹⁴ Aaron S. Mansfield,¹⁵ Alexander Spira,¹⁶ Pasi A. Jänne,¹⁷ Santiago Viteri,¹⁸ Jose Manuel Trigo,¹⁹ Martin Curtis,²⁰ Patricia A. Lorenzini,²⁰ Meena Thayu,²⁰ Amy Roshak,²⁰ Kyounghwa Bae,²⁰ Roland E. Knoblauch,²⁰ Joshua C. Curtin,²⁰ Nahor Haddish-Berhane,²⁰ Matthew V. Lorenzi,²⁰ Keunchil Park,²¹ Joshua M. Bauml²²


Activity of JNJ-372 in Patients with Exon20ins Disease

Haura EB. ASCO 2019

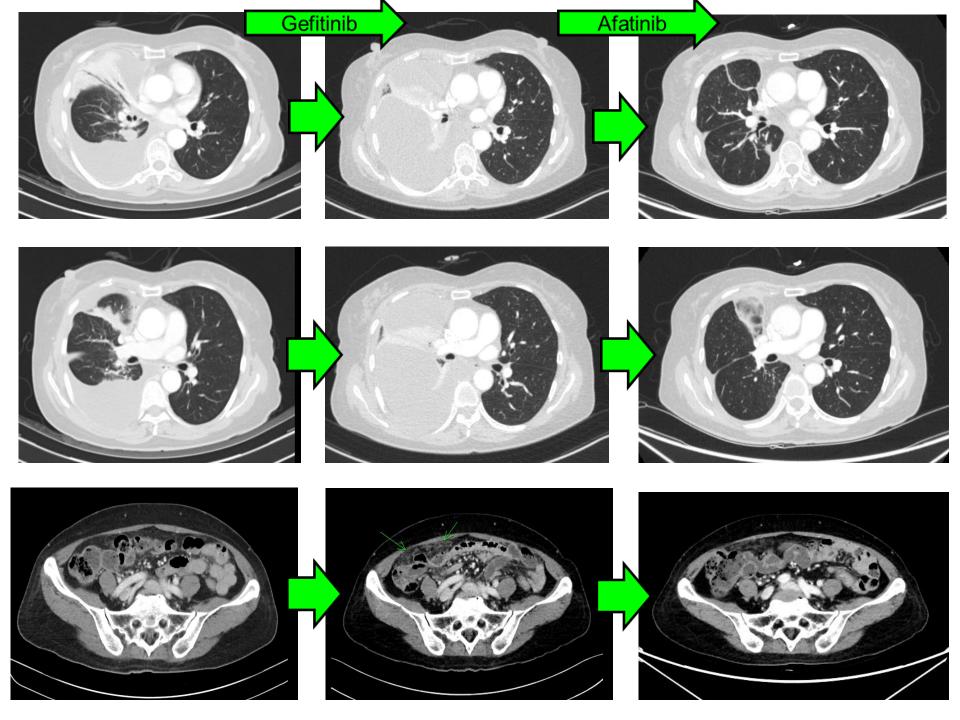
Treatment course

JNJ-61186372 **PFS 7+ months**

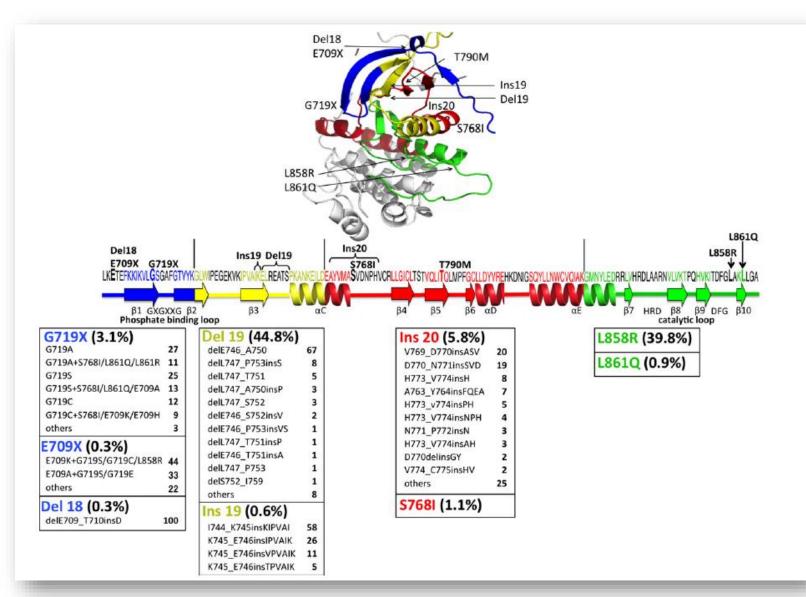
Jun 2019

Apr 2019

Sep 2019


Nov 2019

My Experience with Guardant360.....


- Satisfied with TAT and quality of report (simple and clear)
- Help find a new potentially effective treatment right on time
- Notably, help find <u>level I/IIA biomarkers</u> (EGFR, ALK, ROS1, RET, HER2 mutation etc) not detected by tissue PCR and NGS
- Useful in cases with insufficient tissue
- Help "laserpoint" the best EGFR-TKI

Gefitinib Afatinib Dacomitinib Osimertinib Lasertinib

Not all EGFR mutations are created equally

In Vitro Sensitivity of Ba/F3 cells expressing each EGFR mutation to various TKI

Even	Cotoson	Mutations	First ge	eneration	S	econd generati	on	Third ge	neration
Exon	Category	Mutations	Gefitinib	Erlotinib	Afatinib	Dacomitinib	Neratinib	Osimertinib	Rociletinib
18	Del18	delE709_T710insD	882	884	1.7	29	27	93	999
	E709X	E709K	187	215	0.7	16	6	62	706
	G719X	G719A	213	167	0.9	6	1.1	53	214
19	Della	delE746_A750	4.0	4.9	0.9	- Si	60	1.1	19
	Del19	delE746_S752insV	306	14	0.2	1.4	86		
	Del19	delL747_A750insP	7.4	13	1	1.6	30		
	Del19	delL747_P753insS	4.1	5.4	2	1.9	38		
	Del19	delS752_1759	35	7.9	0.2	2	6.7		
	Ins19	1744_K745insKIPVAI	400		7				
	Ins19	K745_E746insTPVAIK	100		0.9				
20	Ins20	A763_Y764insFQEA	174	48	3.7			44	673
	Ins20	Y764_V765insHH	>1000	3845	79			237	1730
	Ins20	M766_A767insAl		3403	79				
	Ins20	V769_D770insASV	3100	4400	72	230	48	333	5290
	Ins20	D770_N771insNPG	3356	3700	72		230	42	262
	Ins20	D770_N771insSVD		3187	86				
	Ins20	H773_V774insH		>10 000	268		550		
	S768I	S768I	315	250	0.7			49	
	T790M	T790M+delE746_A750	8300	>10 000	64	140		3	28
	T790M	T790M+L858R	>10 000	>10 000	119	300		21	13
21	L858R	L858R	26	16	4	2.6	1.4	9	140
	L861Q	L861Q	170	103	0.5		3.3	9	
	drug conce	in Interleakin 3	9950 (448–2717)	(2717–4040)	(69–130)	(166–238)	(N/A-132)	9070 (400–600)	1549 N/A-N/A

8821999 유O렬 F

Case Presentation

Pathology report Parietal pleural biopsy

Metastatic adenocarcinoma, Moderately differentiated EGFR 19del mutant, ALK (-), ROS1(-), PDL1(22C3) 60%

Lung cancer, cT2aN0M1a – 2018.12

s/p VATS RLL wedge resection (2018.12.05, at 서울성모병원) NGS; TP53muta-p.lle255Asn(c.764T>A)(variant allele frequency EGFRmuta-p.Leu747Pro(c.2239_2240TT>CC)variant allele

s/p Gefitinib monotherapy (2019.05.08 ~ 2019.07.17)

→ Rt. Pleural effusion 증가 (Malignant pleural effusion)

s/p #2 Gemcitabine/carboplatin (비급여) + Gefitinib (2019.07.18 ~ s/p #5 Gemcitabine/carboplatin (비급여) + Afatinib (2019.08.28 ~ on #7 Gemcitabine/carboplatin (비급여) + Gefitinib (2019.11.12 ~

NGS, 고형암 panel (Level II) Analysis Report

■ 검체 정보

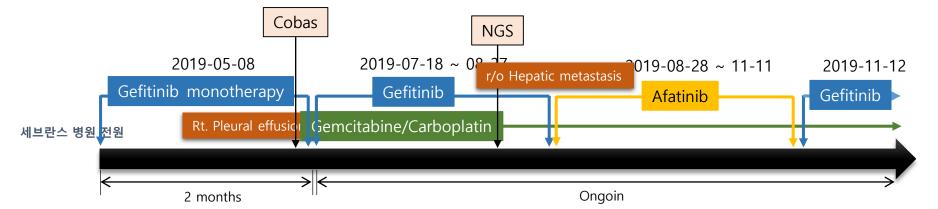
검제 번호 성별 나이		Unit NO.	환자명	장기명/진단	검제 유형	
SR19-05032	ф	62	8821999	유이럴	Pieura/Lung.Metastatic adenocarcinoma	FFPE
의뢰의	의 의뢰의 소속		검제의 적절성여부	검제 접수일	결과보고일	
조병철 종양내과		적합 (Tumor%: 20 %)	20190802	20190926		

■ 검사결과

1. Variants of clinical significance

- SNVs & Indels :

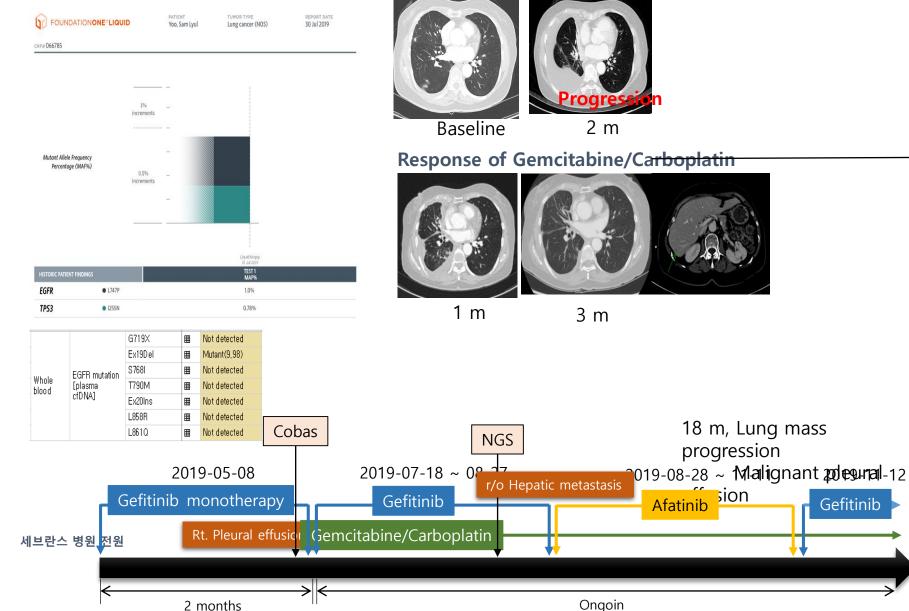
	GENE	MUTATION TYPE	AA CHANGE	VAF	HGVSc	HGVSp
y	EGFR	Missense mutation	p.L747P	18.1%	NM_005228.3:c.2239_2240delTTi nsCC	NP_005219.2:p.Leu747Pro
-	TP53	Missense mutation	p.1255N	17.5%	NM_000546.5:c.764T>A	NP_000537.3:p.Ile255Asn


- Fusion gene : None

- Copy number variation : None

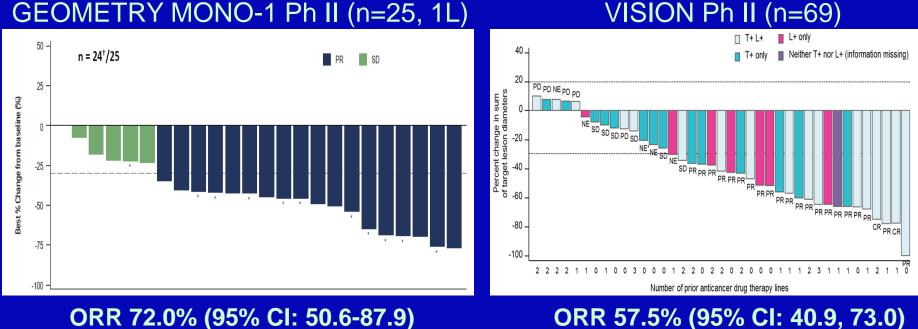
2. Variants of unknown significance

- SNVs & Indels :


~	GENE	MUTATION TYPE	AA CHANGE	VAF	HGVSc	HGVSp
	IDH2	Missense mutation	p.M397V	49%	NM_002168.2:c1189A>G	NP_002159.2 p.Met397Val
1	MPL	Frameshift insertion	p.E576Rfs*37	47%	NM_005373.2:c.1725dupA	NP_005364.1:p.Glu576ArgfsT er37
~	NOTCH1	Missense mutation	p.D2239N	43.7%	NM_017617.3:c.6715G>A	NP_060067.3:p.Asp2239Asn
3	BRIP1	Missense mutation	p.C3505	40.9%	NM 032043.2:c1049G>C	NP 114432.2:p.Cys350Ser

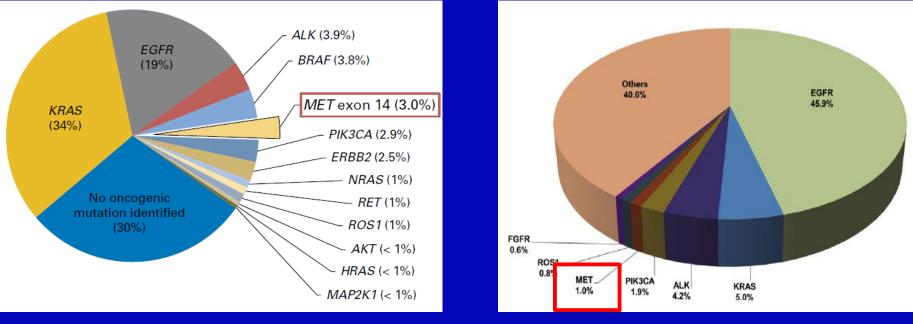


8821999 유O렬 F


Gefitinib

Case Presentation Response of Gefitinib

Efficacy of Capmatinib and **Tepotinib in MET exon 14 skipping**


ORR 72.0% (95% CI: 50.6-87.9)

Wolf J. ESMO 2018; Felip E. WCLC 2018

MET exon 14 skipping represents a unique subset of NSCLC

White patients (n=933)

Chinese (n=968)

- Significantly older than EGFR/KRAS mutant patients/~60% smoker
- Occur predominantly in adenocarcinoma; enriched in sarcomatoid carcinoma (~20%)
- Up to 20% with concurrent high-level MET amplification
- Mutually exclusive with other oncogenic drivers (EGFR/KRAS/ERBB2)
- Diagnosis: DNA-based NGS

Awad MM. JCO 2016; Liu SY. JTO 2016; Liu X. JCO 2016