早期肺腺癌的病理診斷

台北榮總病理檢驗部 葉奕成 2019-12-07 Sequential progression of lung adenocarcinoma

Preinvasive lesions (no stromal invasion)

Minimally invasive (invasion <= 5 mm)

Invasive (invasion > 5 mm)

Progressive genomic evolution from AAH to ADC

Nat Commun. 2019 Jul 5;10(1):2978.

Progressive genomic evolution from AAH to ADC

Nat Commun. 2019 Jul 5;10(1):2978.

Histology patterns of adenocarcinoma

Invasive ADC is classified by its predominant histology

Histologic subtype correlates with post-operative outcome

Yoshizawa A. et al. J Thorac Oncol. 2013 Jan;8(1):52-61

Surgical implications

- Limited resection for early-stage lung adenocarcinomas?
 - (1) AIS & MIA (& Lepidic predominant AdCA?)– Limited resection may be appropriate
 - (2) Invasive predominant adenocarcinoma
 - Limited resection may not be sufficient, especially for tumors containing high grade components

Challenges in pathological diagnosis of early small lung adenocarcinoma

- Preoperative biopsies
- Frozen sections

• Reproducibility and interobserver agreement

Concordance between biopsy and resection:

• Histologic subtype \rightarrow Overall accuracy = 58% - 77% ¹⁻⁴

- J Thorac Cardiovasc Surg. 2017 Jul;154(1):332-339.
 Lung Cancer. 2016 Apr;94:1-6.
- 3. Ann Thorac Surg. 2019 Aug;108(2):392-398.
- 4. Tsai et al. (VGH-TPE data, in submission)

Concordance between biopsy and resection:

• Presence/absence of high grade patterns (MIP/SOL):

 \rightarrow Low sensitivity, high specificity

Histologic pattern	Sensitivity	Specificity
Micropapillary	7.8% – 30%	95% – 97.4%
Solid	14.6% – 44%	97% – 97.7%

J Thorac Cardiovasc Surg. 2017 Jul;154(1):332-339. Lung Cancer. 2016 Apr;94:1-6. Ann Thorac Surg. 2019 Aug;108(2):392-398. Tsai et al. (VGH-TPE data, in submission)

Factors influencing concordance:

(1) Tumor size

Tsai et al. (in submission)

Factors influencing concordance:

(2) Radiologic appearance

Tsai et al. (in submission)

Factors influencing concordance:

(3) Percentage of subtype component

Challenges in pathological diagnosis of early small lung adenocarcinoma

- Preoperative biopsies
- Frozen sections

• Reproducibility and interobserver agreement

Potential applications of frozen sections in early small lung adenocarcinoma

- Histologic subtyping?
 - Lepidic, acinar, papillary, micropapillary, solid,...
- Detect high grade histologic features?
 - Micropapillary & solid growth patterns
- Evaluate degree of invasion?
 - AIS vs. MIA vs. Invasive adenocarcinoma

Accuracy of FS: Predominant histologic subtype

• Study in MSKCC: 361 cases

Overall accuracy for histology subtype: 68%

Predominant histologic subtype	Sensitivity	Specificity	Карра	
Lepidic	75%	93%	0.681	
Acinar	70%	79%	0.481	
Papillary	62%	91%	0.527	
Micropapillary	21%	99%	0.277	
Solid	79%	94%	0.700	

Accuracy of FS: Presence/absence of histologic patterns

• Study in MSKCC: 361 cases

Histologic pattern (yes/no)	Sensitivity	Specificity	Карра
Lepidic	75%	91%	0.588
Acinar	90%	67%	0.252
Papillary	70%	79%	0.397
Micropapillary	37%	94%	0.321
Solid	69%	96%	0.670

High specificity, but low sensitivity for MIP and SOL patterns

Reason for discrepancy in frozen sections

No. (%) of each type of error				
Parameters	Sampling error	Interpretation error	Sampling + interpretation error	
Predominant histologic Overall	al subtype 58 (69.0)	17 (20.2)	9 (10.7)	
Lepidic	8 (57.1)	5 (35.7)	1 (7.1)	
Acinar	19 (79.2)	4 (16.7)	1 (4.2)	
Papillary	18 (78.3)	4 (17.4)	1 (4.3)	
Micropapillary	5 (41.7)	3 (25.0)	4 (33.3)	
Solid	8 (72.7)	1 (9.1)	2 (18.2)	
Presence/absence of h stological pattern Lepidic 32 (64.0)		18 (36.0)	0 (0)	
Acinar	20 (74.1)	7 (25.9)	0 (0)	
Papillary	44 (67.7)	21 (32.3)	0 (0)	
Micropapillary	47 (62.7)	28 (37.3)	0 (0)	
Solid	26 (72.2)	10 (27.8)	0 (0)	

Sampling error is the most common source of errors (67%)

Accuracy of frozen section diagnosis for AIS/MIA/Invasive AdCA (1)

Study from Cedars-Sinai Medical Center:

- 224 lung adenocarcinoma with frozen sections
- Cases accurately diagnosed at FS:
 - AIS: 16 / 27 cases (59%)
 - MIA: 21 / 46 cases (46%)
 - Invasive AdCA: 146 / 151 cases (97%)
- Most common FS errors

 \rightarrow Overdiagnosis of MIA as invasive AdCA (n=13, 28%)

Arch Pathol Lab Med. 2012 Dec;136(12):1515-21.

Accuracy of frozen section diagnosis for AIS/MIA/Invasive AdCA (2)

Study from MSKCC:

FS diagnosis by 5 pathologists	Permanent section diagnosis (Final diagnosis)			
	AIS (n=2)	MIA (n=15)	LPD AdCA (n=18)	
AIS	100%	6.7%	3.3%	
ΜΙΑ	0%	41.3%	17.7%	
LPD AdCA	0%	52.0%	79.0%	

Most common error: Overdiagnosis of MIA as invasive AdCA (lepidic)

Accuracy of frozen section diagnosis for AIS/MIA/Invasive AdCA (3)

Study from Fudan University Shanghai Cancer Hospital:

	Permanent section diagnosis (Final diagnosis)			
FS diagnosis	AAH (n=32)	AIS (n=126)	MIA (n=273)	Inv AdCA (n=372)
ААН	100%	21.4%	2.6%	0
AIS	0%	73.8%	20.9%	1.6%
ΜΙΑ	0%	0.8%	75.5%	4.6%
Inv AdCA	0%	0%	0.7%	93.3%
Benign	0%	4.0%	0.4%	0.5%

Most common error: Underdiagnosis of AIS, MIA and Inv AdCA

J Clin Oncol. 2016 Feb 1;34(4):307-13.

VGH-TPE experience (2013-2018)

FS diagnosis	Permanent section diagnosis (Final diagnosis)			
	AIS (n=80)	MIA (n=42)	AdCA-LPD (n=41)	AdCA-Others (n=89)
AdCA, Lepidic	79%	69%	54%	2%
AdCA, Invasive	21%	31%	46%	98%

Most common error: Overestimate of invasion

*Only include primary lung adenocarcinomas

*Only include cases with FS diagnosis made by the two pulmonary pathologist

Potential applications of frozen sections in early small lung adenocarcinoma

• Histologic subtyping?

→ Accuracy about 70%, hampered by sampling error

- Detect high grade histologic features?
 → Low sensitivity, despite high specificity
- Evaluate degree of invasion?
 - \rightarrow Challenging
 - → Overdiagnosis (USA, VGH-TPE) / Underdiagnosis (China)
 - → Invasive predominant AdCA: > 90% accuracy

Challenges in pathological diagnosis of early small lung adenocarcinoma

- Frozen sections
- Preoperative biopsies

Reproducibility and interobserver agreement

Distribution of histologic subtypes

Lee MC et al. J Thorac Dis. 2014 Oct;6(Suppl 5):S568-80.

- > 60 cases of AIS/MIA/Inv AdCA from Massachusetts General Hospital
- Six expert lung pathologists from 4 countries
- Whole slide images as materials

Agreement on degree of invasion

0.41 – 0.60 Moderate agreement

Agreement on predominant pattern

Morphological overlap of histologic pattterns

Summary

- Adenocarcinoma consists of a biological spectrum
 - From preinvasive lesions, minimally invasive adenocarcinomas, to invasive adenocarcinomas
 - Progressive genomic evolution
 - Histology is of prognostic significance
- Diagnosis in preoperative biopsy and frozen sections
 - Predominant subtype: around 60-70% accuracy
 - Detect MIP/SOL pattern: low sensitivity, high specificity
 - AIS vs. MIA vs. Lepidic AdCA: challenging
 - Invasive predominant AdCA: > 90% accuracy in FS
- Reproducibility and interobserver agreement
 - Only fair to moderate agreement

Thanks for your attention Have a nice day!

Factors influencing concordance (for aggressive pattern):(3) Percentage of the MIP/SOL component

J Thorac Cardiovasc Surg. 2017 Jul;154(1):332-339.

Selective clonal sweep during neoplastic evolution of AAH

Nat Commun. 2019 Jul 5;10(1):2978.

Intra-observer agreement

WHO Classification of tumours of the lung^{a,b}

8140/3

8250/3* 8551/3*

8260/3 8265/3 8230/3

8253/3* 8254/3* 8480/3 8333/3 8144/3 8250/2* 8257/3* 8250/0* 8410/2 8253/2 8070/3 8071/3 8072/3 8083/3 8070/2 8041/3 8045/3 8013/3 8013/3 8240/3 8249/3

8040/0* 8012/3 8560/3 8033/3 8022/3 8032/3 8032/3 8032/3 8980/3 8972/3 8082/3 8023/3* 8430/3 8200/3 8562/3 8940/0

WHO Classification of Tumours of the Lung, Pleura, Thymus and Heart

Edited by William D. Travis, Elisabeth Brambilla, Allen P. Burke, Alexander Marx, Andrew G. Nicholson

Epithelial Tumours
Adenocarcinoma
Lepidic adenocarcinoma
Acinar adenocarcinoma
Papillary adenocarcinoma
Micropapillary adenocarcinoma
Solid adenocarcinoma
Invasive mucinous adenocarcinoma
Mixed invasive mucinous and
non-mucinous adenocarcinoma
Colloid adenocarcinoma
Fetal adenocarcinoma
Enteric adenocarcinoma
Minimally invasive adenocarcinoma
Non-mucinous
Mucinous
Preinvasive lesions
Atypical adenomatous hyperplasia
Adenocarcinoma in situ
Non-mucinous
Mucinous
Squamous cell carcinoma
Keratinizing squamous cell carcinoma
Non-keratinizing squamous cell carcinoma
Basaloid squamous cell carcinoma
Preinvasive lesion
Squamous cell carcinoma in situ
Neuroendocrine Turnours
Small cell carcinoma
Combined small cell carcinoma
Large cell neuroendocrine carcinoma
Combined large cell neuroendocrine
carcinoma
Carcinoid tumours
Typical carcinoid tumour
Atypical carcinoid tumour
Preinvasive lesion
Diffuse idionathic pulmonary
neuroendocrine cell hyperolasia
Large cell carcinoma
Adenosquamous carcinoma
Sarcomatoid carcinoma
Pleomorphic carcinoma
Spindle cell carcinoma
Giant cell carcinoma
Caroineeareema
Pulmonany blastoma
Other and unclassified carcinomae
Lymphospithelioma like carcinoma
NUT carcinoma
Saliyany gland hone tumoure
Mucconidermoid caroinema
Adapoid quetio paroinoma
Enithelial mucenithelial carcinoma
Pleemerphie adeneme
Fiedhorphic adenoma

Papillomas	
Squamous cell papilloma	8052/0
Exophytic	8052/0
Inverted	8053/0
Glandular papilloma	8260/0
Mixed squamous cell and glandular papilloma	8560/0
Adenomas	
Sclerosing pneumocytoma	8832/0
Alveolar adenoma	8251/0
Papillary adenoma	8260/0
Mucinous cystadenoma	8470/0
Mucous gland adenoma	8480/0
Mesenchymal tumours	
Pulmonary hamartoma	8992/0
Chondroma	9220/0
PEComatous tumours	
Clear cell tumour	8005/0
Lymphangioleiomyomatosis	9174/
PEComa, benign	8714/0
Congenital peribronchial	
myofibroblastic tumour	8827/
Diffuse pulmonary lymphangiomatosis	
Inflammatory myofibroblastic tumour	8825/
Epithelioid haemangioendothelioma	9133/3
Pleuropulmonary blastoma	8973/3
Synovial sarcoma	9040/3
Pulmonary artery intimal sarcoma	9137/3
Pulmonary myxoid sarcoma with	
EWSR1-CREB1 translocation	8842/3
Myoepithelial tumours	
Myoepithelioma	8982/0
Myoepithelial carcinoma	8982/3
Lymphohistiocytic turnours	
Extranodal marginal zone lymphoma of mucosa-	
associated lymphoid tissue (MALT lymphoma)	9699/3
Diffuse large B-cell lymphoma	9680/3
Lymphomatoid granulomatosis	9766/
Intravascular large B-cell lymphoma	9680/3
Pulmonary Langerhans cell histiocytosis	9751/
Erdheim-Chester disease	9750/
Tumours of ectopic origin	
Germ cell tumours	
Teratoma mature	9080/0
Teratoma immature	9080/
Intrapulmonary thymoma	8580/3
Melanoma	8720/3
Meningioma, NOS	9530/0

Lung adenocarcinoma

- Preinvasive lesions
 - Atypical adenomatous hyperplasia (AAH)
 - Adenocarcinoma in situ (AIS)
- Minimally invasive adenocarcinoma (MIA)
- Invasive adenocarcinoma
 - Lepidic
 - Acinar
 - Papillary
 - Micropapillary
 - Solid
- Uncommon variants

Procedure-specific risk of recurrence in MIP (+) patients

Limited resection patients

Lobectomy patients

J Natl Cancer Inst. 2013 Aug 21;105(16):1212-20.