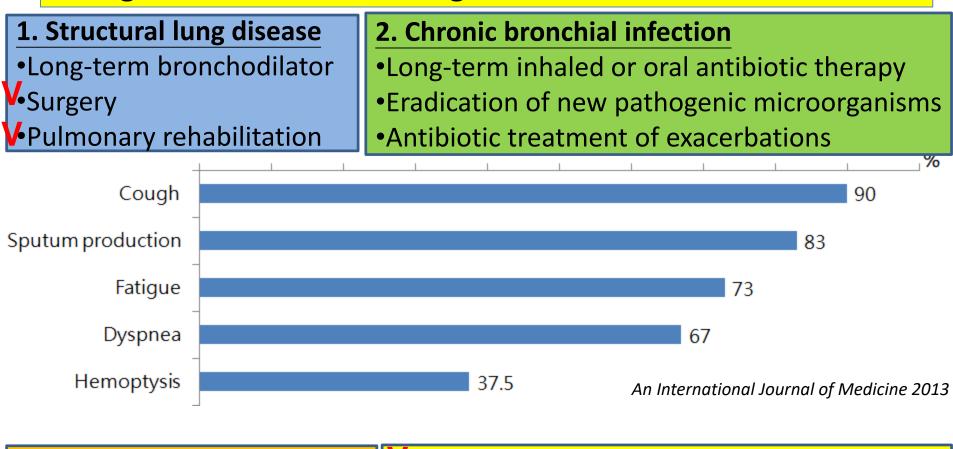

Pulmonary Rehabilitation and Non-Pharmacologic Treatment For Bronchiectasis



慈濟醫院 胸腔內科 藍胄進 Chou-Chin Lan, MD, PhD

- •Division of Pulmonary Medicine, Buddhist Tzu-Chi General Hospital
- School of Medicine, Tzu-Chi University, Hualien

Common symptoms and signs

ERS guidelines for the management of adult bronchiectasis

3. Inflammation

Long-term antiinflammatory therapies

4. Impaired mucociliary clearance

- Long-term mucoactive treatments
- Airway clearance

British Thoracic Society Guideline for bronchiectasis in adults Thorax 2019

Step 1

- Treat underlying cause
- Airways clearance techniques +/pulmonary rehabilitation
- Annual influenza vaccination
- Prompt antibiotic treatment for exacerbations
- Self management plan

Step 2

If 3 or more exacerbations/yr despite Step 1*

 Physiotherapy reassessment and consider mucoactive treatment

Step 3

If 3 or more exacerbations/yr despite Step 2*

- 1) If Pseudomonas aeruginosa, long trem inhaled antipseudomonal antibiotic or alternatively long term macrolide
- 2) If other Potentially Pathogenic Microorganisms, long term macrolides or alternatively long term oral or inhaled targeted antibiotic
- 3) If no pathogen, long term macrolides

Step 4

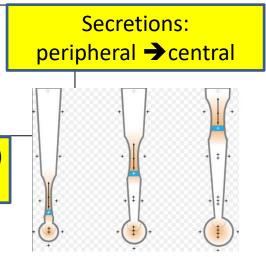
If 3 or more exacerbations/yr despite Step 3*

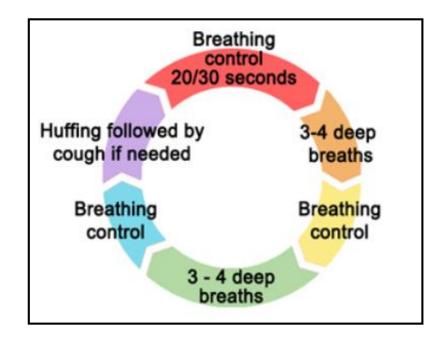
 Long term macrolide and long term inhaled antibiotic Step 2

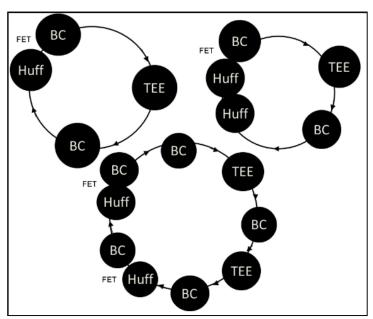
If 5 or more exacerbations/yr despite Step 4*

 Consider regular intravenous antibiotics every 2-3 months

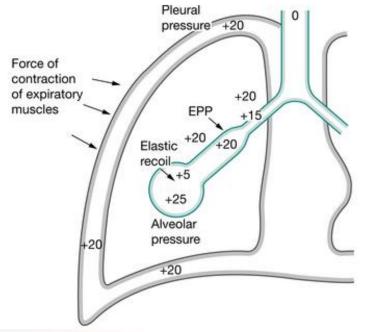
Airway clearance techniques


- Active cycle of breathing techniques (ACBT)
- Autogenic drainage (AD)
- Forced expiration technique (FET)
- Manual techniques (MTs)
- Postural drainage (PD) or modified PD
- Positive expiratory pressure (PEP)
- Oscillating positive expiratory pressure (OPEP)


Active cycle of breathing techniques (ACBT)

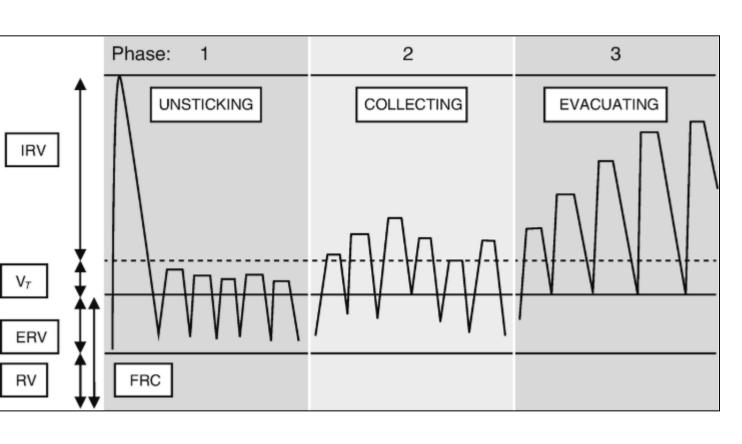

- 1. Breathing control
- 2. Thoracic expansion exercises
- 3. Forced expiration technique (FET)

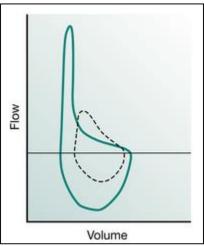
Huff or cough (high lung volume)

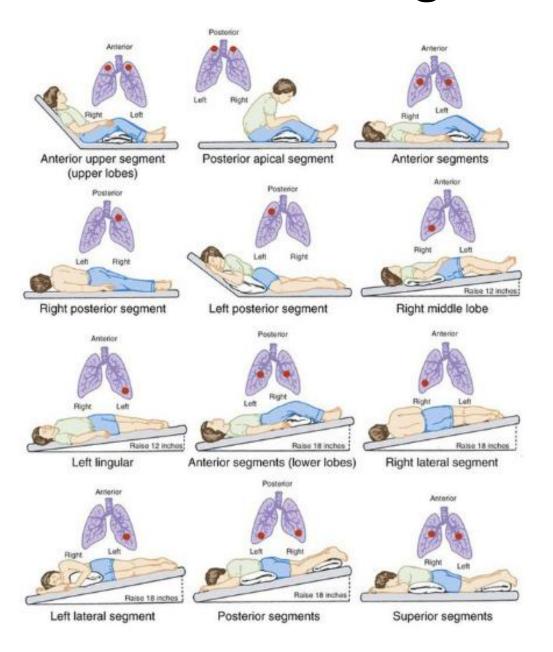

→ clear secretion

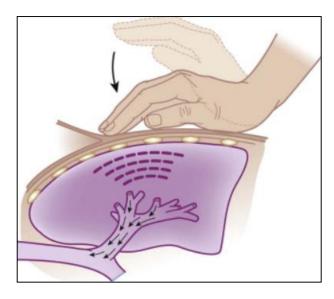


Forced expiration technique (FET)



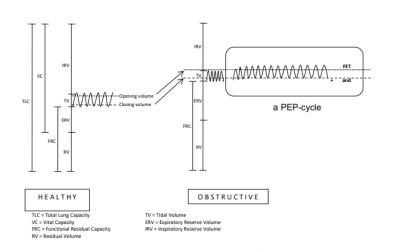


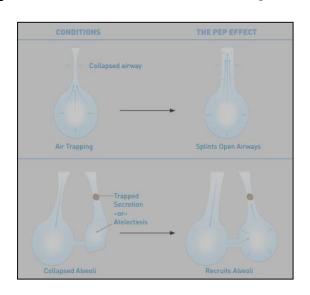

Autogenic drainage (AD)

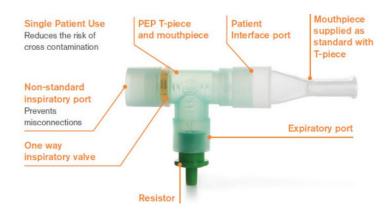


Postural drainage

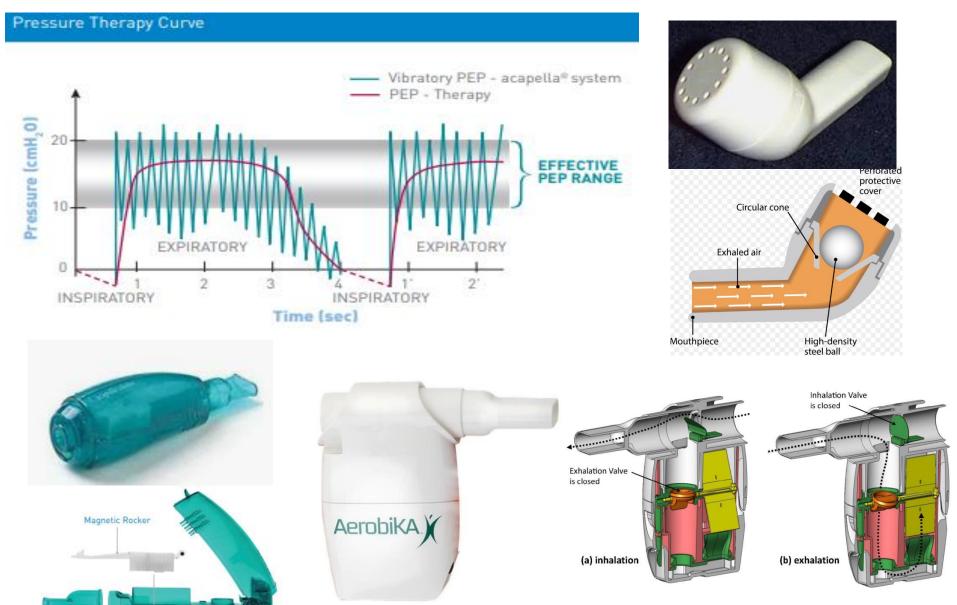
Manual techniques (MTs)

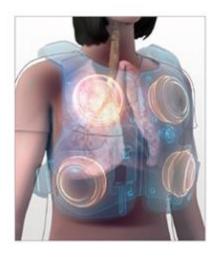


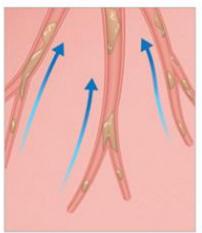


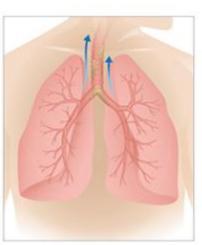


Positive Expiratory Pressure (PEP)




Oscillating Positive Expiratory Pressure (OPEP)




High-frequency chest wall oscillation

Mucociliary clearance techniques for treating non-cystic fibrosis bronchiectasis: Is there evidence?

International Journal of Immunopathology and Pharmacology 2015, Vol. 28(2) 150–159 © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0394632015584724 iji.sagepub.com

\$SAGE

D Snijders, B Fernandez Dominguez, S Calgaro, Bertozzi, A Escribano Montaner, G Perilongo and A Barbato

Reviewed

- Active cycle of breathing techniques (ACBT)
- Forced expiration techniques (FET)
- Autogenic drainage(AD)
- Postural drainage(PD)
- Oscillating positive expiratory pressure (OPEP)
- High frequency chest wall oscillation (HFCWO)

Studies on the effect of **ACBTs** on bronchiectasis

Active cycle of breathing techniques							
Year	Method	Patients	Intervention	Results			
2012 (Plarques ⁶)	Single Interventional study	23 (adults)	One cycle of ABCT, median duration of 24 min	Minimal statistical change in hing sounds was observed after a single session of ACBT Perceived broathiesmest was significantly reduced post intervention. No significant changes were observed in either hing function or oxygen saturation.			
2012 (Gutmarties*)	RCT crossover	to (adulto)	Fauther VIUPI® vs. ELTGOL vs. control with a 1-week wash-out period	A significant decrease in RV, FRC, and TLC A significant higher spatian production during FLTGOL The ELTGOL and Flutter VRP169			

- 1. Increased amount of sputum expectorated
- 2. Decrease breathless
- 3. No effects on FEV1 and FVC
- 4. Significant decreases of RV, FRC, and TLC

				No significant changes in health status, ventilatory function, and BORG scale Fatients preferred the Flatter to ACBT for routine use
1999 (Cecins ¹⁴)	RCT crossover	6 out of 19 (adults)	2-day crossover: ACBT with head- down tilt vs. ACBT alone	 No significant differences for the number of productive coughs and weight of spatum expectorated during treatment
				 No significant changes in SAO2 and FEV1
				 Preference for ACBT alone, but with head-down tilk seems more effective.
(Herroro ¹⁵)	RCT crossover	7 (adults)	ELTGOL vs. AD vs. temporary PEP (Untko®)	 AD obtained the major short-time sputum production
			70.0000	AD was the favorite technique

Studies on the effect of **forced expiration techniques (FET)** on bronchiectasis

Year	Method	Patients	Intervention	Results
1994 (Hasani ¹⁶)	RCT crossover	19 (adults)	I day FET vs. I day Cough vs. I day Control intervention	No change in pulmonary function FET and cough increased clearance of the lung and amount of sputum
			of sputum e ses of RV, FR	•
			•	
			wash-out period	 A significant higher sputum production during ELTGOL The ELTGOL and Flutter VRPI® acutely reduced lung hyperinflation but only the ELTGOL increased to removal of pulmonary secretions

Studies on the effect of **postural drainage (PD)**on bronchiectasis

Postural drainage (PD)						
Year	Method	Patients	Intervention	Results		
2008 (Mutalithas ⁸)	RCT	53 (adults)	Two weeks of ACTs	Reduction of cough symptoms and health related quality of life		

- 1. Significant higher sputum expectoration with ACBT
- 2. Reduction of cough symptoms and HRQL

2004 (Patterson ¹⁰) 1999 (Cecins ¹⁴)	RCT crossover RCT crossover	20 (adults) 6 out of 19 (adults)	ACBT (plus PD and vibration) vs. TIRE 2-day crossover: ACBT with head- down tilt vs. ACBT	Significant higher sputum expectoration with ACBT ACBT with head-down tilt was considered more effective Horizontal position was better
1995 (Ambrosino ¹⁸)	RCT	I4 (adults)	alone OPep vs. PD combined with chest percussion	 No differences in tolerance or amount of sputum produced

Studies on the effect of **OPEP** on bronchiectasis

Oscillating PEP techniques						
Year	Method	Patients	Intervention	Results		
2012 (Figuerredo ¹⁵)	RCT crossover	8 (adults)	Flutter Valve TM vs. sham Flutter (placebo)	Flutter ValveTM cleared more secretions than the Sham Flutter intervention Flutter ValveTM increases sputum removal during treatment and diminishes total and pertpheral airway.		

- 1.Acapella®, Flutter®
- 2. Increased amount of sputum expectorated
- 3. Significant decreases of RV, FRC, and TLC
- 4. No effects on FEV1 and FVC

				 No effect on spatium microbiology, FEV1, FVC, FEF25—75%, MIP, MEP, or exacerbation frequency in respect to no ACT
(Patterson ²⁵) (A)	RCT crossover	20 (adults)	Acapella ® vs. usual ACTs	Increase in sputum expectoration with Acapella® device Time of intervention was longer with Acapella® vs usual ACTs There were no significant differences in lune function
(Patterson ¹⁹)	RCT	20 (adults)	Single cycle ABCT vs. single cycle of Acapella ®	ACBT does not cause obstruction Sputum expectoration similar between the two interventions ACBT less effective in airway clearance
2004 (Valente ²⁴)	Ptiot, single cohort.	8 (adults + adolescents)	A Flutter Valve TM vs. Sham Flutter (placebo) vs. PEP intervention	 The citary or cough transport and adhesive force of sputum in a small sample of patients with bronchiectasis are not modified by the use of FlutterVRPI in a single session

Studies on the effect of **high frequency chest** wall oscillation (HFCWO) on bronchiectasis

Н		\sim	۱۸		\sim
н	г	L	v	٧	U

Year	Method	Patients	Intervention	Results
2011 (Chakravorty ²⁸)	RCT crossover	22 (adults)	4 weeks HFCWO device vs. 4 weeks conventional ACTs	A trend in reduction of sputum expectoration with HFCWO

- 20
- 1. Improve sputum clearance
- 2.Improve HRQL
- 3. Improve lung function
- 4. More comfortable

2013 (Gokdemir³⁰)

RCT crossover

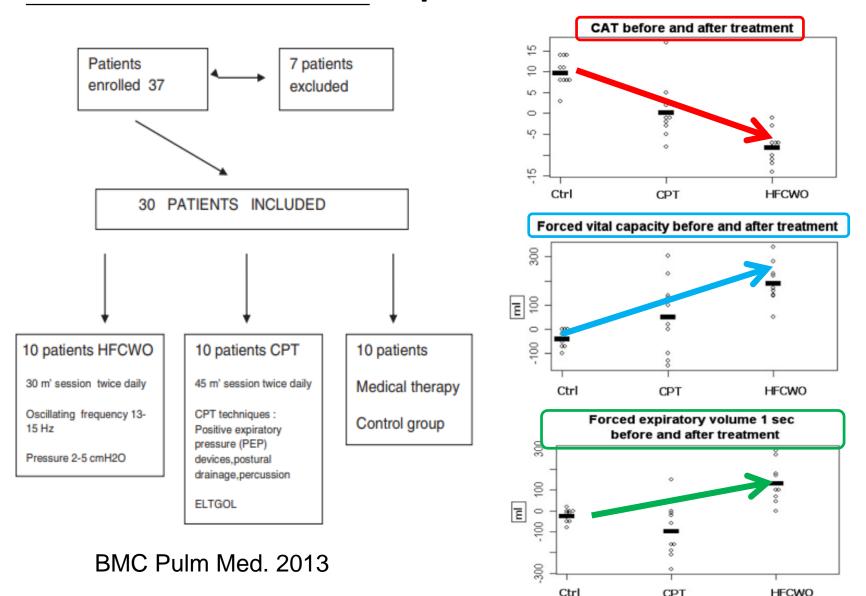
24 (children)

5 day Vest vs. 5 day conventional PR

- in sputum
- PFT values of patients increased significantly after both interventions. There was no significant difference in PFT values between the two groups
- HFCWO was found more comfortable by the patients

A randomized evaluation of OPEP (Flutter) and ACBT with and without PD in bronchiectasis

- First RCT compare flutter vs ACBT vs ACBT-PD (random order)
- 36 patients (mean age 62 years, range 33–83); FEV1 57%,

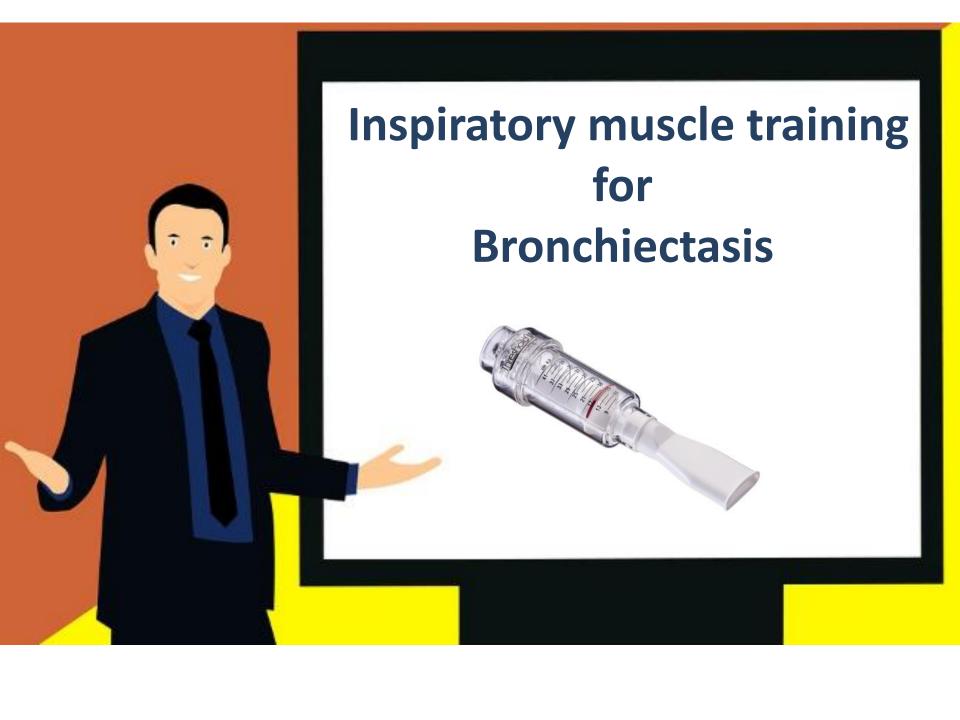

Table 2 (a) Comparison of acute sputus	m clearance measures with Flutte	er and ACBT with and without I	PD
Results expressed as mean (SD)	Flutter	ACBT	ACBT-PD
Sputum wet wt (g) clearance	4.4 (6.1)	4.1 (5.7)	10.0 (12.4)
Sputum wet wt (g) post-30-min	1.2 (1.8)	1.5 (2.1)	1.2 (1.3)
Total wet wt (g)	5.6 (7.5)	5.6 (6.7)	11.2 (13.3)
Sputum vol (mL) clearance	6.0 (8.5)	5.4 (8.0)	11.1 (15.1)
Sputum vol (mL) post-30-min	1.9 (3.1)	1.9 (2.4)	1.4 (1.5)
Total vol (mL)	7.9 (11.4)	7.3 (9.6)	12.6 (15.9)
Duration (min)	15.0 (7.8)	15.8 (7.6)	17.8 (9.6)

Total sputum weight for ACBT-PD was twice that of either ACBT alone or Flutter

Results expressed as mean difference (SD)	Flutter versus ACBT	Flutter versus ACBT-PD	ACBT versus ACBT-PD
Sputum wet wt (g)	0.3 (3.4)	-5.6 (8.2)*	-5.9 (9.6)*
Sputum wet wt (g) post-30-min	-0.3(2.0)	0.01 (1.6)	0.3 (1.6)
Total wet wt (g)	0.0 (3.7)	-5.6 (8.5)**	-5.6 (9.2)**
Sputum wet vol (mL)	0.6 (3.9)	-5.1 (8.8)*	-5.7 (10.5)*
Sputum wet vol (mL) post-30-min	0.1 (2.2)	0.5 (2.5)	0.4 (1.8)
Total vol (mL)	0.9 (4.7)	-4.9 (8.2)**	-5.3 (9.9)**
Duration	-0.7(7.0)	-1.7 (7.3)	-1.4(9.5)

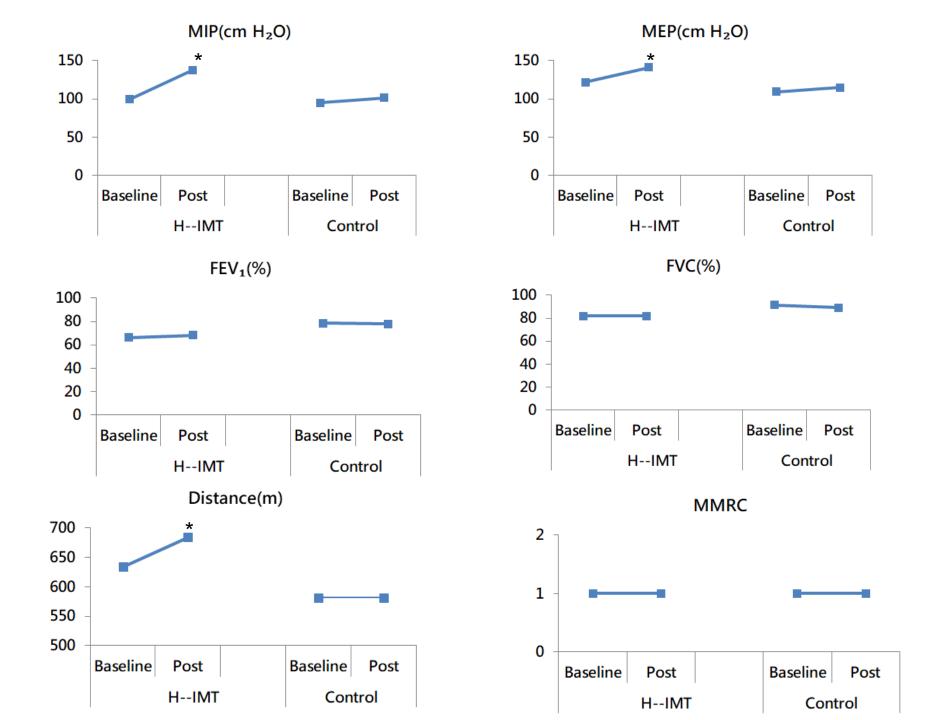
All three techniques were well accepted and tolerated. Patient preference was 16 (44%) for Flutter, eight (22%) ACBT and 12 (33%) for ACBT-PD

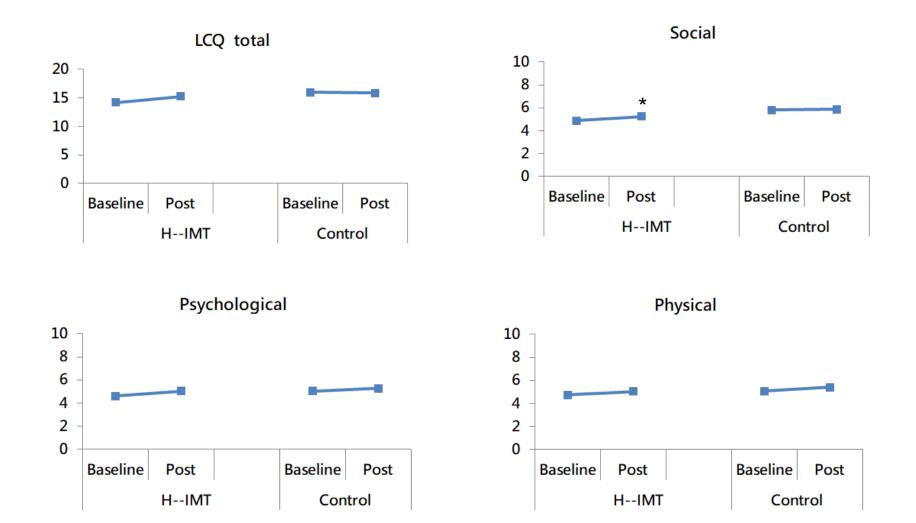
Effectiveness of treatment with high-frequency chest wall oscillation in patients with bronchiectasis



Effect of airway clearance (ACT) techniques in patients experiencing an acute exacerbation of bronchiectasis: a systematic review

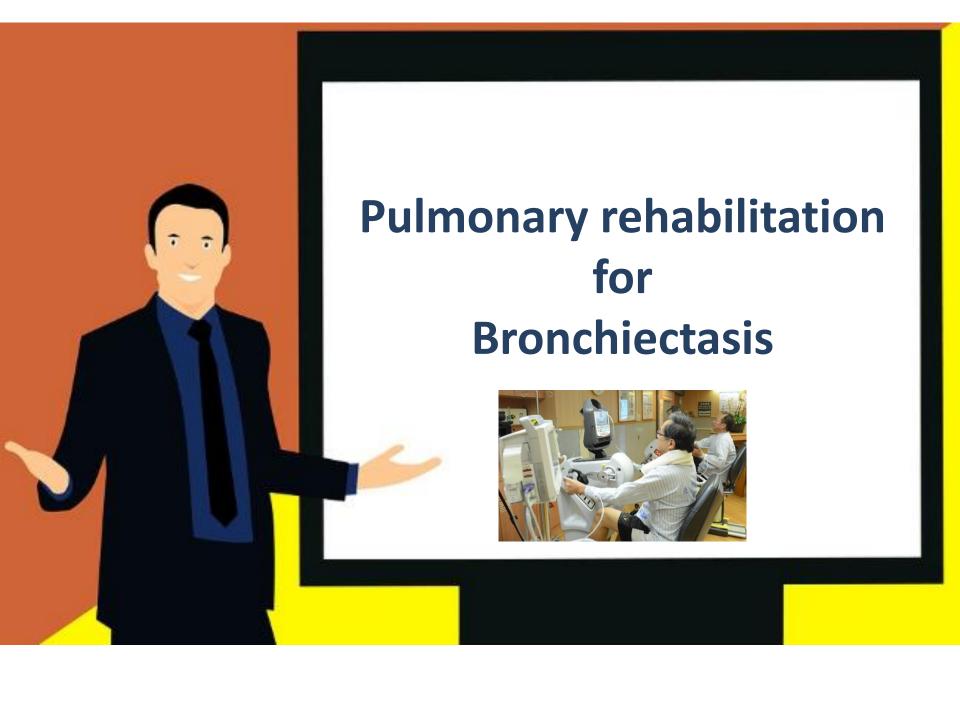
- Six studies, total of 120 participants.
- ACTs include ACBT, AD, PD, MT, PEP, OPEP
- Results:
- 1) Safe, no adverse reactions
- 2) ACBT may be more effective than PD and percussion (at improving gas exchange, sputum volume, and health-related quality)
- 3) Two studies prefer OPEP over the ACBT or PD


How to select airway clearance technique for patients


Technique	Age of Patient	Assistant Needed	Equipment Needed	During Acute Exacerbation	Concurrent Nebulizer	Precautions	Cost
PD, percussio vibration/ shaking			好不	好教	?		pensive if rformed by regiver over ng term
			infants			motion injuries	
ACBT	Begin to teach at 3-4 years of age	Until 8-10 years of age	Positioning aids; percussor/ vibrator	Yes	Only in upright or side-lying	Precautions for head-down positions	Inexpensive if done independently
AD			右沿	古绘	2		cost
HFCWO			'月/又	一月此	:		ry
			appropriately sized vest			catheter, or other device in chest area	
IPV	Adolescents	While in	Home unit or	May not be	Yes	Titrate for	Moderately
Acoustic Airway		來醫	等院力 generator and	<mark> </mark>	了便?	are needed	ry expensive
Clearance			appropriate size transducer	are needed		are needed	expensive
Exercise	Children, adolescents, and adults	For young children	Variable	No	Premedicate before exercise	Exercise- induced bronchospasm; oxygen desaturation; adjunct to ACT	Depends on type of exercise

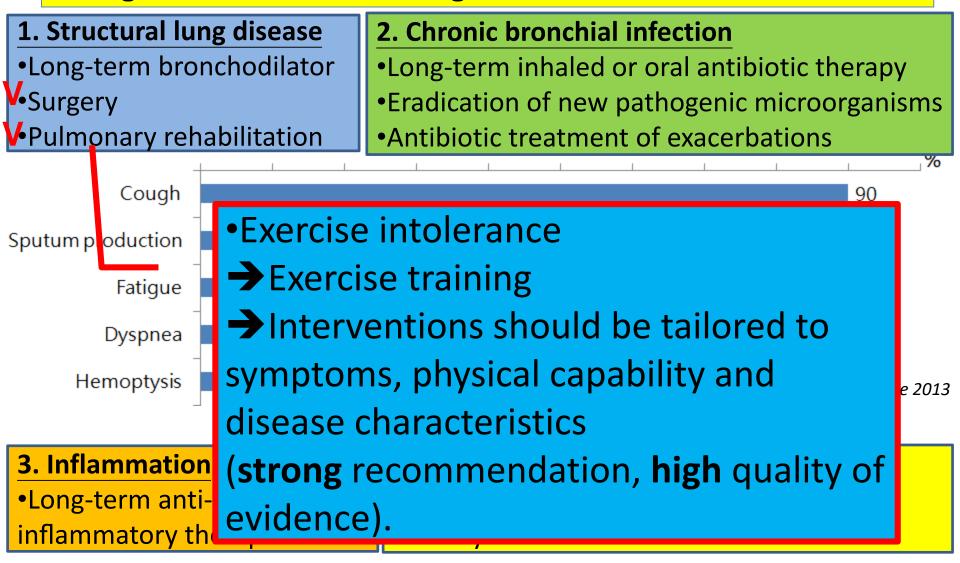
Inspiratory muscle training in bronchiectasis

- Forty-five patients
- H-IMT for 8 weeks vs control
 - Threshold loading with a target workload of MIP 70%
 - 3-min cycles (2-min training: 1-min rest)
 - Total 21 min



The H-IMT increased exercise capacity, respiratory muscle strength, and social aspects of QOL.

British Thoracic Society Guideline


Role of IMT for bronchiectasis

Consider the use of inspiratory muscle training in conjunction with conventional pulmonary rehabilitation to enhance the maintenance of the training effect. (B)

Common symptoms and signs

ERS guidelines for the management of adult bronchiectasis

Bronchiectasis: new therapies and new perspectives

	Strength of recommendation	Quality of evidence
Do a minimum bundle of tests, including differential blood count, serum immunoglobulins, and testing for ABPA in newly diagnosed patients	Conditional	Very low
Treat acute exacerbations of bronchiectasis with 14 days of antibiotics	Conditional	Very low
Patients with a new isolation of Pseudomonas aeruginosa should be offered eradication antibiotic treatment	Conditional	Very low
Do not offer eradication antibiotic treatment to patients after new isolation of pathogens other than P aeruginosa	Conditional	Very low
Do not offer inhaled corticosteroids for the treatment of bronchiectasis	Conditional	Low
Do not offer statins for the treatment of bronchiectasis	Strong	Low
Offer long-term antibiotic treatment for patients with three or more exacerbations per year*	Conditional	Moderate
Offer mucoactive treatment for patients with difficulty expectorating sputum and poor quality of life when standard airway clearance techniques have failed to control symptoms	Conditional	Low
Do not offer recombinant DNase for the treatment of bronchiectasis	Strong	Moderate
Do not routinely offer long-acting bronchodilators for patients with bronchiectasis	Conditional	Very low
Offer long-acting bronchodilators for patients with clinically significant breathlessness on an individual basis	Conditional	Very low
Do not offer surgical treatments, except to patients with localised disease and high exacerbation frequency despite optimum medical care	Conditional	Very low
Patients with chronic productive cough or difficulty expectorating should be taught airway clearance techniques	Conditional	Low
Patients with impaired exercise capacity should participate in pulmonary rehabilitation and take regular exercise	Strong	High

British Thoracic Society Guideline

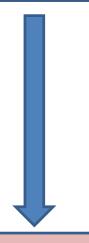
- Role of PR for bronchiectasis

Offer pulmonary rehabilitation to individuals who are functionally limited by shortness of breath (MMRC Dyspnea Scale ≥1). (B)

Consider the use of inspiratory muscle training in conjunction with conventional pulmonary rehabilitation to enhance the maintenance of the training effect. (B)

Pulmonary rehabilitation in bronchiectasis

-a propensity-matched study


Eur Respir J 2019; 53

Patients referred for PR with a diagnosis of bronchiectasis, MRC Dyspnoea score ≥2 (n=548)

EUROPEAN RESPIRATORY journal

FLAGSHIP SCIENTIFIC JOURNAL OF ERS

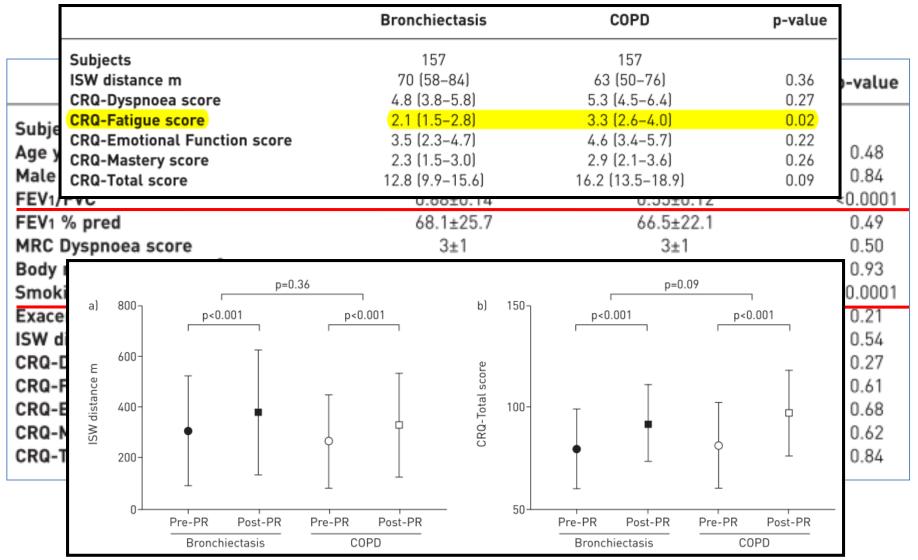
•Excluded (n=335):

- Absence of diagnostic CT scan (n=41)
- Coexisting diagnosis of COPD (n=188)
- Smoking history ≥10 pack-years (n=37)
- Coexisting cardiac comorbidity
- Precluded exercise training (n=14)
- Declined PR (n=55)

Patients with bronchiectasis (n=213)

Propensity score matched 1:1

•age, sex, FEV1 % pred, BMI, MRC score, exercise capacity


Patients with COPD (n=213)

Completed PR (n=157, 74%)

- •8-week PR, 2+1 sessions/week
- Exercise training 1 hour (aerobic walking and cycling)
- Education 45-60 min

Completed PR (n=157, 74%)

Pulmonary rehabilitation in bronchiectasis: a propensity-matched study

Pulmonary Rehabilitation in Individuals With Bronchiectasis: A Systematic Review

- Supervised outpatient 8 weeks PR
- Benefits:
 - Exercise capacity
 - HRQoL
 - Frequency of exacerbations
- Benefits sustain: 6 months.

Summary

Indication of PR:

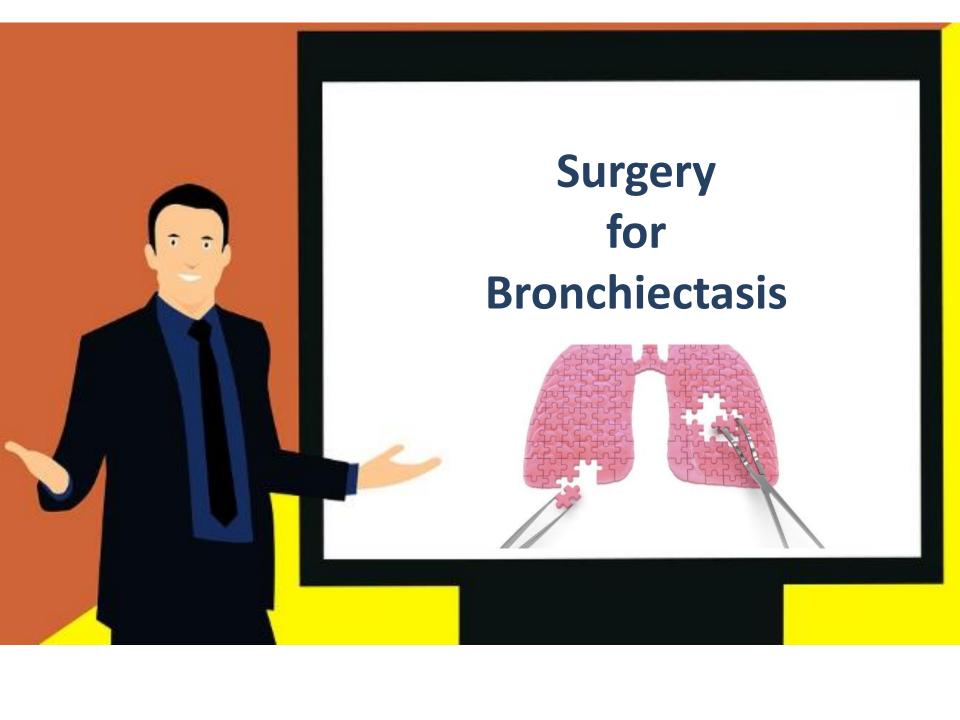
Subjects with dyspnea, poor QoL, limitations in activities

Components of PR:

Exercise training, respiratory muscle training, airway clearance

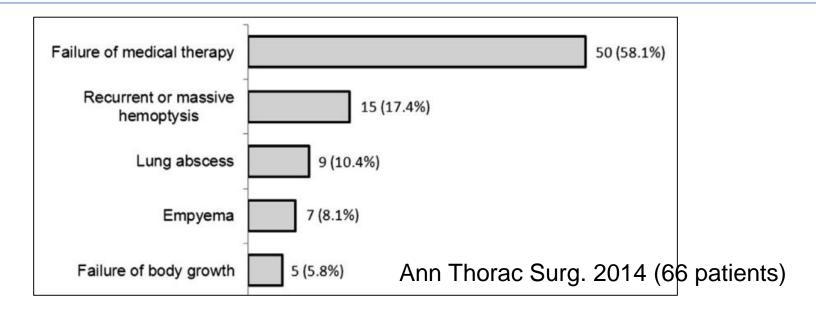
The benefits of PR:

•Exercise capacity, breathlessness, fatigue and acute exacerbation



Pulmonary rehabilitation for bronchiectasis: if not now, when?

Mark L. Metersky¹ and Richard L. ZuWallack²


Eur Respir J 2019; 53: 1802474

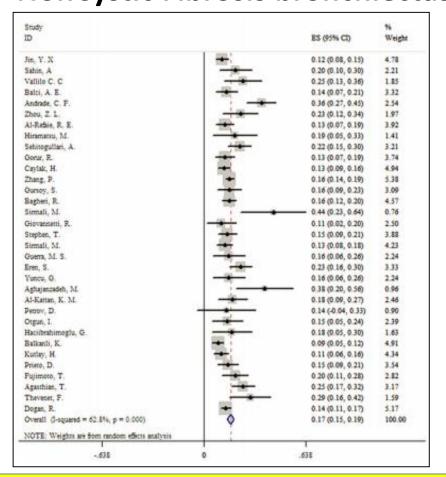
Surgery for bronchiectasis

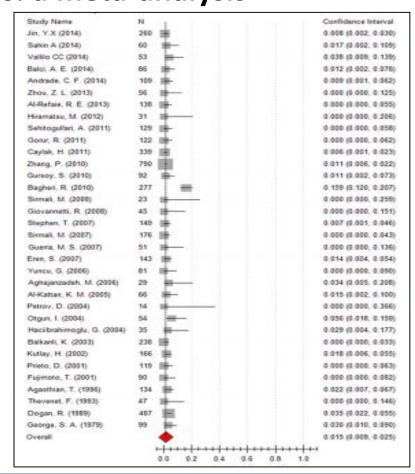
- Indication for surgery (BTS guideline, Thorax. 2019)
 - 1. Persistent symptoms (up to a year of medical treatment)
 - 2. Severe or frequent exacerbations
 - 3. Recurrent refractory or massive hemoptysis
 - 4. Post obstruction bronchiectasis distal to tumors
 - 5. Localized severely damaged lobe/segment (source of sepsis)

Analysis of surgery for bronchiectasis

First author [ref.]	Study period	Patients n	Age years	Males	Left-sided disease	Complete resection	Operative mortality
DOGAN [9]	1976-1988	487	25.5 (2-56)	57	64	Not stated	3.5
AGASTHIAN [5]	1976-1993	134	48 (4-89)	41	Not stated	80.6	2.2
Г илиото [10]	1990-1997	90	44.7 (9-75)	49	59	83.3	0
PRIETO [13]	1988-1999	119	42.2 (11-77)	40	Not stated	90.8	0
KUTLAY [12]	1990-2000	166	34.1 (7-70)	45	59	88.5	1.7
BALKANLI [8]	1992-2001	238	23.7 (15-48)	86	Not stated	64.7	0
GURSOY [11]	2002-2007	92	38.7 (10-67)	41	74	90.2	1.1
BAGHERI [7]	1985-2008	277	34.7 (8–65)	72	70	82.7	0.7
ZHANG [22]	1989–2008	790	41.6 (6–79)	59	Not stated	89	1.1

First author [ref.]	Lobectomy	Pnemonectomy	Segementectomy/ wedge	Lobectomy + segment	Bilobectomy
DOGAN [9]	41.5	39	0	14.8	4.7
AGASTHIAN [5]	64.2	15.7	13.4	6.7	0
Ashour [6]	64.7	16.5	18.8	0	0
Г илимото [10]	54.3	6.5	33.7	0	5.4
PRIETO [13]	62	8	13	14	3
KUTLAY [12]	63.4	7.5	12.2	10.5	6.4
BALKANLI [8]	79.4	5.5	2.1	13	0
GURSOY [11]	39.1	10.9	Not stated	34.8	Not stated
BAGHERI [7]	42.2	7.9	6.5	23.5	19.9
ZHANG [22]	62.9	11.3	4.7	14	7.1

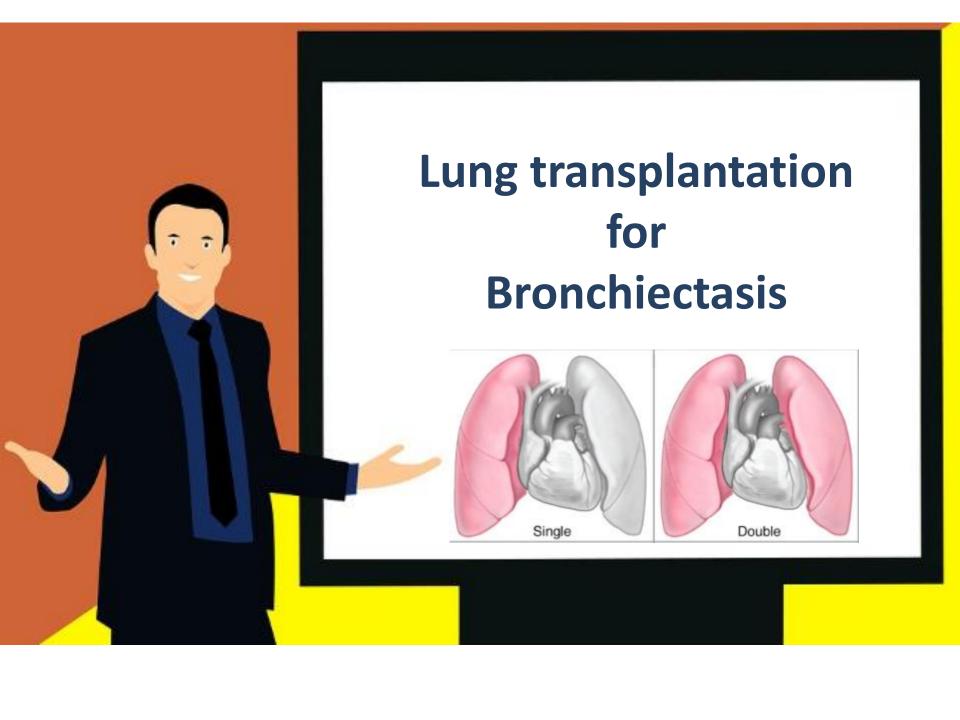

Analysis of surgery for bronchiectasis


First author [ref.]	Prolonged air leak/space issues	Atelectasis	Empyema/ BPF	Wound infection	Bleeding	Arrhythmia	Overall morbidity
DOGAN [9]	0	1.4	1.8	7.4	0	0	10.6
AGASTHIAN [5]	4.5	6.7	4.5	0	3	2.2	24.6
Г илиото [10]	5.6	6.7	6.7	0	1.1	0	19.6
PRIETO [13]	5.9	0	0	0	3.4	3.4	12.6
K UTLAY [12]	1.7	2.3	1.2	0	1.7	0	11.4
BALKANLI [8]	2.5	2.9	1.7	0	1.7	0	8.8
GURSOY [11]	9.8	3.2	0	3.3	0	0	16.3
BAGHERI [7]	3.2	3.6	3.2	5.7	0	0	15.8
ZHANG [22]	2.7	2	1	0	1.1	4	16.2

First author [ref.]	Mean follow-up time years	% Follow-up	Asymptomatic	Symptomatic improvement	No change in symptoms/worse
DOGAN [9]	4.6	Not stated	71	Not stated	Not stated
AGASTHIAN [5]	6	76.9	45.5	22.4	9
ASHOUR [6]	3.8	100	74.1	22.4	3.5
Г илиото [10]	6.1	87.8	40	33.3	14.5
PRIETO [13]	4.5	90.8	61.3	26.1	3.4
KUTLAY [12]	4.2	89.2	66.9	18.7	3.6
BALKANLI [8]	0.75	96.2	79.4	12.2	4.6
GURSOY [11]	1.3	81.5	68.5	8.7	4.3
BAGHERI [7]	4.5	100	68.5	23.8	7.5
ZHANG [22]	4.2	89.4	60.5	14.1	14.8

Eur Respir Mon 2011

Efficiency and safety of surgical intervention to patients with NonCystic Fibrosis bronchiectasis: a meta-analysis Sci Rep. 2015



Morbidity from 33 studies (4583 patients): 16.7% (95% CI, 14.8–18.6%).

Mortality from 34 studies (4788 patients): 1.5% (95% CI, 0.9–2.5%).

Free of symptoms: 66.5% (95% CI, 61.3-71.7%); improved: 27.5% (95% CI, 22.5-32.5%)

Guidelines for lung transplantation in **diffuse** bronchiectasis

Guidelines for referral to
a transplant centre

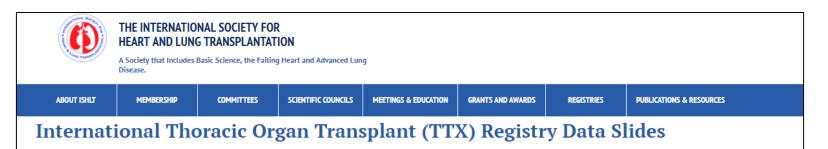
FEV1 <30% predicted or a rapid decline in FEV1, particularly
in young female patients

Exacerbation of pulmonary disease requiring ICU stay
Increasing frequency of exacerbations requiring antibiotic therapy
Refractory and/or recurrent pneumothorax
Recurrent haemoptysis not controlled by embolisation

Guidelines for transplantation

Progressive decline in lung function
Oxygen-dependent respiratory failure
Hypercapnia
Pulmonary hypertension

Eur Respir Mon 2011

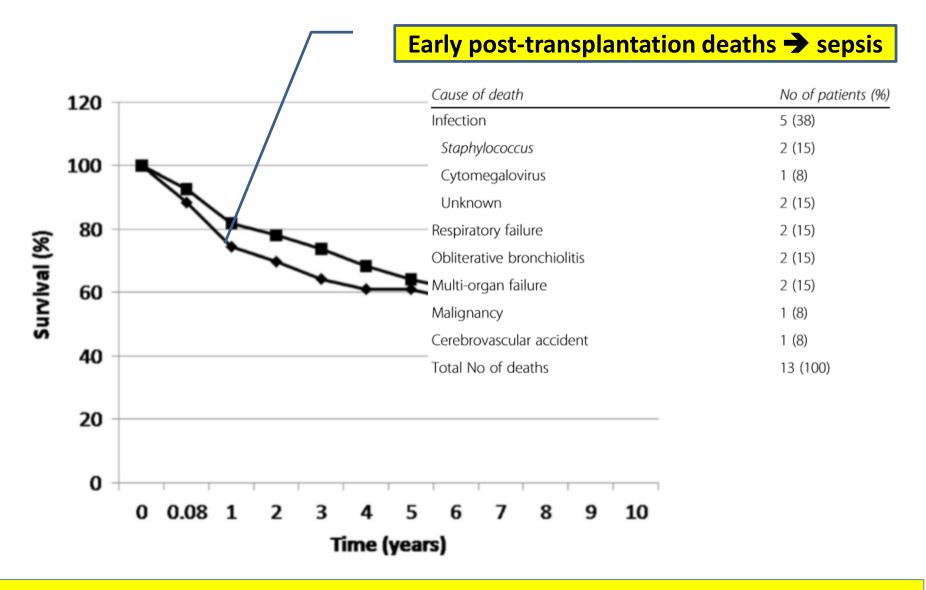

Generally lung transplantation is indicated where survival is anticipated at 50% at 2 years without lung transplantation

Procedures of for lung transplantation in diffuse bronchiectasis

- 1) Bilateral transplantation.
- 2) Single lung transplantation + contralateral pneumonectomy.

Overall indication of lung transplantation (international registry)

- < 1200 for bronchiectasis
- 1280 for pulmonary hypertension
- 6862 for cystic fibrosis
- 13672 for COPD

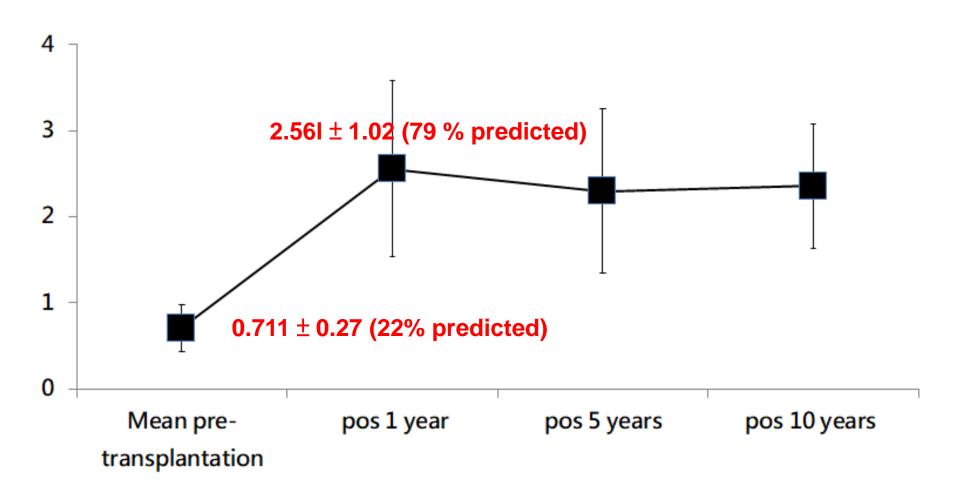

The ISHLT TTX Registry is pleased to make analyses of the TTX Registry data available to members, health care providers, and the general public. Collected statistical information includes outcome data, survival data, and risk factor data segregated into subgroups according to various demographic criteria as well as the type of transplant (heart/heart-lung/lung).

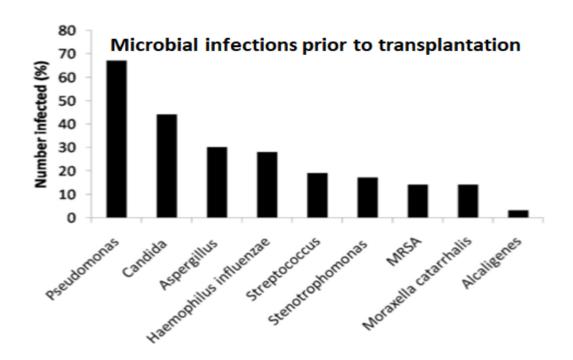
We are pleased to provide the Registry data graphs and charts on the ISHLT web site free of charge as Power Point files. These slides are produced each year and may be used by you in presentations, reports, studies, etc. The citation information is provided at the bottom of each slide. Those using these slides in publications, presentations, reports, etc. are required to include the citation information.

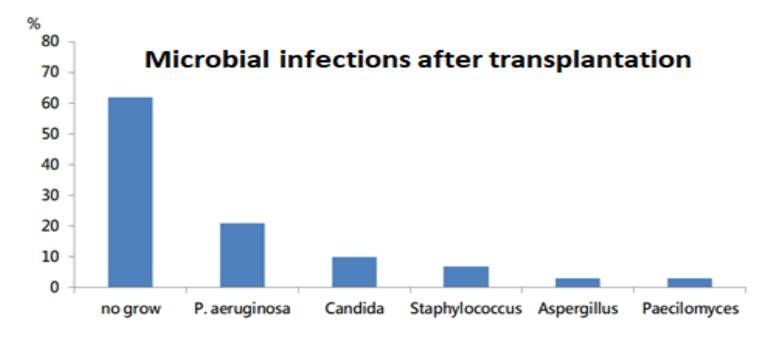
You must have a copy of the Power Point software on your system in order to use the file. Double clicking on any slide when open in Power Point will display the slide's data table.

Outcomes of lung transplantation in adults with bronchiectasis

- A retrospective review, between 1990 and 2013.
- 42 patients underwent lung transplantation
- Majority having bilateral sequential lung transplantation.
- Mean age 47.1 years
- pre-transplantation FEV₁ 0.71± 0.27 (22 % predicted)
- 32 in respiratory failure (89 %) and on long-term oxygen therapy.

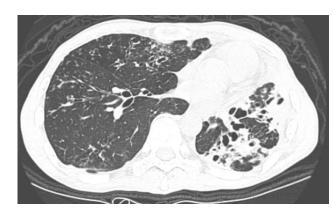



Survival results:

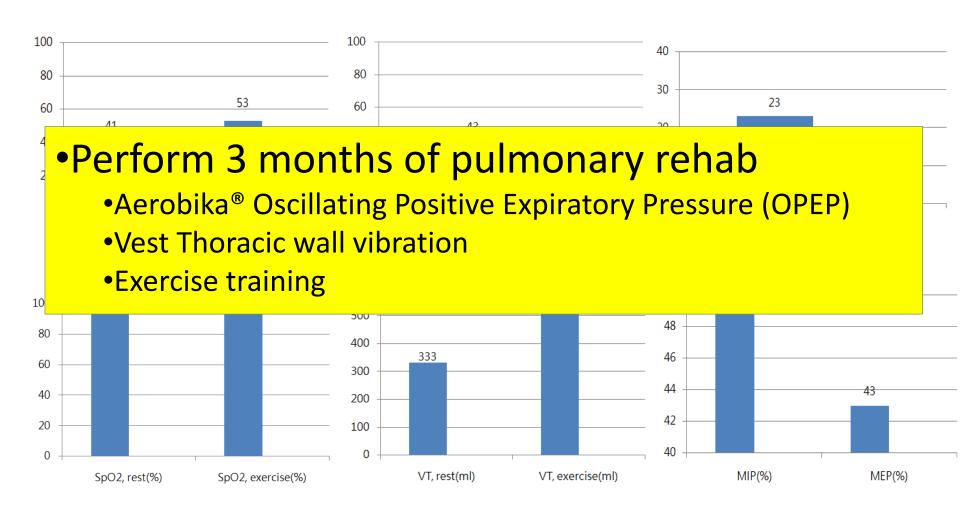

74% at 1 year, 64% at 3 years, 61% at 5 years and 48% at 10 years.

BMC Pulm Med. 2018 May 22;18(1):82

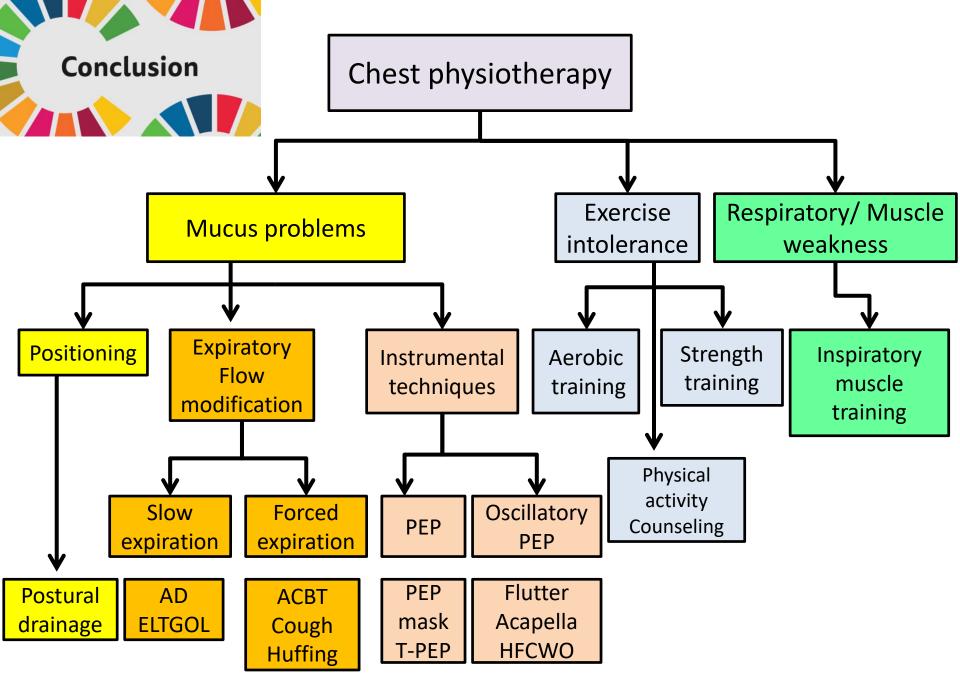
Pre- and post-transplantation FEV1 (L/min)



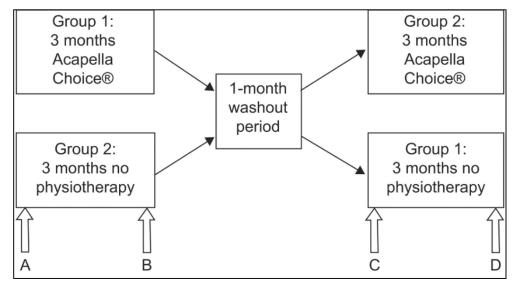
64 year-old male:

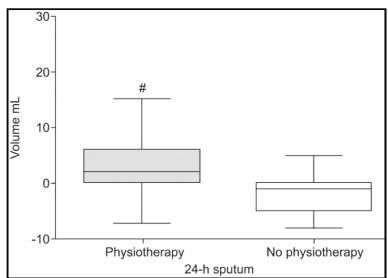

- Cough with purulent sputum
- Exertional dyspnea
- Frequent fever and infection

	Actual	Pred	%Pred
SPIROMETRY			
FVC (L)	1.59	3.49	45
FEV1 (L)	1.59	2.79	57
FEV1/FVC (%)	100		
FEF 25% (L/sec)	5.76	5.63	102
FEF 75% (L/sec)	1.42	1.25	113
FEF 25-75% (L/sec)	3.33	2.89	115
FEF Max (L/sec)	5.95	7.56	78
FIVC (L)	0.08		
FIF Max (L/sec)			
IC (L)	1.12	3.01	37
SVC (L)	1.82	3.49	52
MVV (L/min)	64	122	52

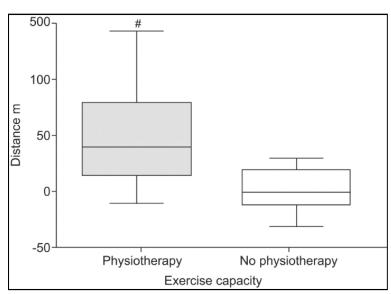


Poor exercise capacity and quality of life

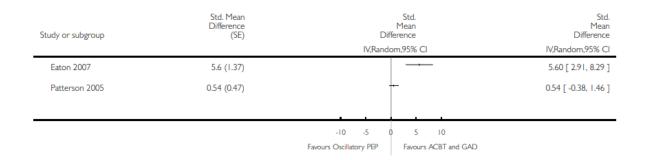

Pulmonary rehabilitation improved exercise capacity and quality of life

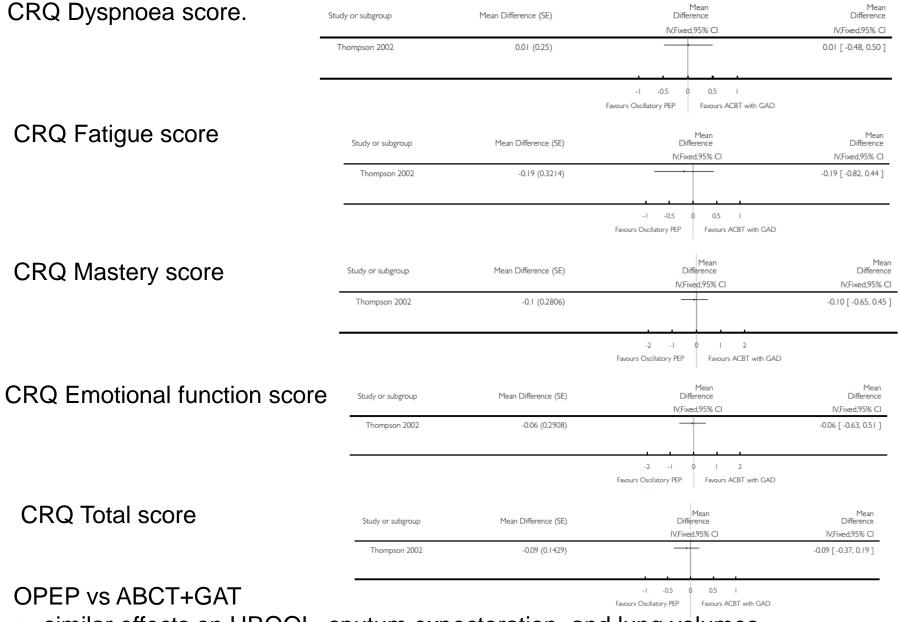





Thank You For Your Atten

A randomised crossover trial of chest physiotherapy in bronchiectasis

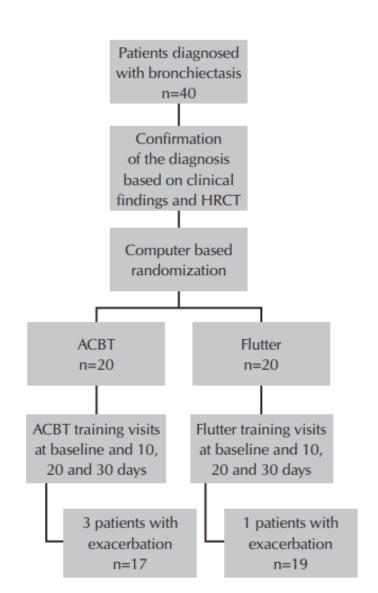


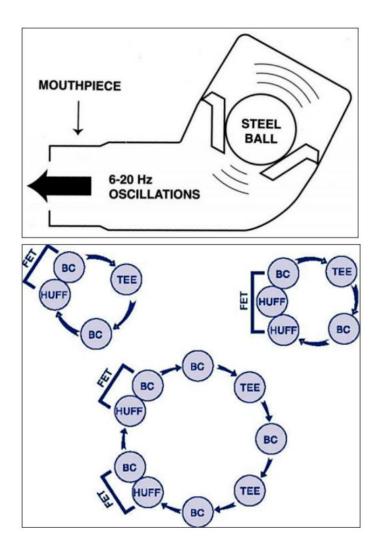

Eur Respir J. 2009

Positive expiratory pressure therapy versus other airway clearance techniques for bronchiectasis

- Oscillatory PEP therapy twice daily for four weeks
- ACBT with GAD when applied daily for four weeks
- Stable or during AE
- Single session or long-term clinical effects

Sputum weight (g)


- similar effects on HRQOL, sputum expectoration, and lung volumes
- when prescribed within a stable clinical state or during an acute exacerbation.


Cochrane Database Syst Rev. 2017

Active Cycles of Breathing Technique (ACBT) versus conventional chest physical therapy

- A randomized crossover single intervention study by Syed et al
- compared ACBT to conventional chest physical therapy (CPT)
 - Both groups completed 10–15 min of postural drainage (PD) prior to their intervention.
 - No significant differences in
 - sputum weight, sputum volume
 - FEV1 and FVC.
 - ACBT more comfortable

The Efficacy of Flutter® and Active Cycle of Breathing Techniques in Bronchiectasis: A Prospective, Randomized, Comparative Study

Turk Thorac J. 2018 Jul;19(3):103-109

Distribution of patients with increased sputum after physiotherapy

	ACBT (n:17	7)	Flutter (n:19)		
	After physiotherapy (n)	р	After p physiotherapy (n)		
Sputum increase	4	*0.004	5	*0.003	

Changes in symptoms after physiotherapy in study groups

		ACBT (n:17)			Flutter (n:19)			
	Before physiotherapy (n)	After physiotherapy (n)	р	Before physiotherapy (n)	After physiotherapy (n)	р		
Cough	14	4	*0.002	10	5	0.13		
Wheezing	5	2	0.38	8	8	1.0		
Fatigue	11	7	0.22	12	4	*0.021		

Turk Thorac J. 2018 Jul;19(3):103-109