The impact of NTM and Pseudomonas on Non-Cystic Fibrosis Bronchiectasis

2019-6-23

長庚 胸腔內科 謝孟亨 Department of Thoracic Medicine Chang Gung Memorial Hospital

Outline

Introduction

The assessment of Non-Cystic Fibrosis Bronchiectasis (Non-CF BE)

The impact of NTM and Pseudomonas on Non-CF BE

>Summary

Review Article

Medical Progress

BRONCHIECTASIS

ALAN F. BARKER, M.D.

This affection of the bronchia is always produced by chronic catarrh, or by some other disease attended by long, violent, and often repeated fits of coughing.

R.T.H. Laënnec1

B RONCHIECTASIS is an uncommon disease with the potential to cause devastating illness, including repeated respiratory infections requiring antibiotics, disabling productive cough, shortness of breath, and occasional hemoptysis. Landmarks in the history of bronchiectasis include the vivid descriptions of patients with suppurative phlegm that appeared in the writings of René Théophile Hyacinthe Laënnec in the early 19th century: the 1922 introducdilated airways alone and is sometimes seen as a residual effect of pneumonia; varicose bronchiectasis (so named because its appearance is similar to that of varicose veins) is characterized by focal constrictive areas along the dilated airways that result from defects in the bronchial wall; and saccular or cystic bronchiectasis is characterized by progressive dilatation of the airways, which end in large cysts, saccules, or grape-like clusters (this finding is always indicative of the most severe form of bronchiectasis).²

The prevalence of bronchiectasis in the United States and worldwide is unknown. There are reports of high prevalence in relatively isolated populations with poor access to health care and high rates of respiratory tract infections during childhood, such as Alaskan Natives in the Yukon–Kuskokwim Delta.³

PATHOPHYSIOLOGY

Bronchiectasis is primarily a disease of the bronchi and bronchioles involving a vicious circle of transmural infection and inflammation with mediator release.⁴ Illness is related to retained inflammatory secretions and microbes that cause obstruction and damage

Varicose

Prevalence of Bronchiectasis

Bronchiectasis increases with age. It is likely to be much more common than reported here because it is not usually detected, reported, or treated (2).

Pathophysiology of Bronchiectasis

Chandrasekaran et al. BMC Pulmonary Medicine (2018) 18:83

Normal Bronchus

Bronchiectasis

Patent airways
 Effective mucus
 clearance
 Normal mucociliary
 function

 Obstructed airways
 In-Effective mucus clearance
 Abnormal mucociliary function

Repeated inflammation or Infection

HE stain of the bronchial wall

Diagnosis : HRCT

Radiographic signs of BE.

A. Bronchus terminating in a cyst;

B . lack of bronchial tapering as it travels to the periphery of the lung;

C . signet ring sign (bronchus is larger than the accompanying vessel);

D . mucus plug (mucus completely filling the airway lumen).

Fig. 2 Predominant aetiologies across different geographic regions and ethnic populations. The individual pie charts indicate the top aetiologies (top 4 or 5) in each cohort. Abbreviations: ABPA – Allergic Broncho-Pulmonary Aspergillosis, COPD – Chronic Obstructive Pulmonary Disorder, NTM – Non-Tuberculosis Mycobacteria, GERD – Gastro-Esophageal Reflux Disease

Outline

>Introduction

The assessment of Non-Cystic Fibrosis Bronchiectasis (Non-CF BE)

The impact of NTM and Pseudomonas on Non-CF BE

Summary

Mortality in Bronchiectasis : does knowing etiology matter ?

FIGURE 2. Kaplan–Meier plot illustrating the survival of all the bronchiectasis patients (——), in addition to the idiopathic (……) and known (– – –) aetiology subgroups. There are no statistically significant differences between the plots (log rank test; p=0.85).

M.R. Loebinger Eur Respir J 2009; 34: 843–849

ORIGINAL ARTICLE

The Bronchiectasis Severity Index

An International Derivation and Validation Study

James D. Chalmers¹, Pieter Goeminne², Stefano Aliberti³, Melissa J. McDonnell^{4,5}, Sara Lonni³, John Davidson⁴, Lucy Poppelwell¹, Waleed Salih¹, Alberto Pesci³, Lieven J. Dupont², Thomas C. Fardon¹, Anthony De Soyza^{4,5}, and Adam T. Hill⁶

¹Tayside Respiratory Research Group, University of Dundee, Dundee, United Kingdom; ²Respiratory Medicine, University Hospital Gasthuisberg, Leuven, Belgium; ³Department of Health Science, University of Milan Bicocca, Clinica Pneumologica, AO San Gerardo, Monza, Italy; ⁴Adult Bronchiectasis Service and Sir William Leech Centre for Lung Research, Freeman Hospital, Newcastle upon Tyne Hospitals, Heaton, Newcastle, United Kingdom; ⁵Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom; and ⁶Department of Respiratory Medicine Royal Infirmary of Edinburgh and the University of Edinburgh, Edinburgh, United Kingdom

Am J Respir Crit Care Med Vol 189, Iss 5, pp 576–585, Mar 1, 2014

Severity Marker	HR (95% CI) for Hospital Admissions during Follow-up	HR (95% CI) for Mortality	Score Points
Age, yr	10 (reference)	1 0 (reference)	0
50-69	1 38 (0 73-2 56)	2 21 (0 28–17 5)	2
70–79	1.50 (0.79–2.80)	8.57 (1.15–63.63)	4
80+	1.76 (0.89–3.50)	23.16 (3.09–173.7)	6
BMI	110 (0.00 0.00)	20.10 (0.00 110.1)	0
<18.5	1.23 (0.73-2.08)	2.25 (1.09-4.67)	2
18.5–25	1.0 (reference)	1.0 (reference)	0
26–29	0.90 (0.62–1.30)	0.91 (0.46–1.81)	0
30 or more	1.14 (0.76–1.70)	1.38 (0.68–2.81)	0
FEV ₁ % predicted			
>80	1.0 (reference)	1.0 (reference)	0
50-80	1.17 (0.74–1.85)	1.34 (0.67–2.67)	1
30–49	1.40 (0.68–2.85)	1.58 (0.72–3.46)	2
<20	1.52 (1.03–2.25)	4.47 (1.60–12.53)	3
Hospital admission before study			
No	1.0 (reference)	1.0 (reference)	0
Yes	13.5 (9.40–19.46)	2.43 (1.30–4.53)	5
Exacerbations before the study			
0	1.0 (reference)		0
1-2	1.67 (0.78–3.58)	1.78 (0.80–3.98)	0
3 or more	2.25 (0.89-5.70)	2.03 (1.02-4.03)	2
MRC dyopnea score	1.0 (************	10 (reference)	0
1-5 4	1.0 (reference)		0
4	2.42 (1.00-3.32)	1.03(0.30-2.20) 1.15(0.50-2.63)	2
Pseudoponas colonization	2.09 (1.59-4.55)	1.15 (0.50-2.05)	5
No	10 (reference)	10 (reference)	0
Ves	2 16 (1 36–3 43)	1 58 (0 75-3 34)	3
Colonization with other organisms	2.10 (1.00-0.40)	1.00 (0.10-0.04)	
No	1.0 (reference)	1.0 (reference)	0
Yes	1.66 (1.12–2.44)	1.10 (0.54–2.24)	1
Radiological severity: ≥3 lobes involved			
or evstic bronchiectasis			
No	1.0 (reference)	1.0 (reference)	0
Yes	1.48 (1.02–2.15)	1.05 (0.57–1.94)	1

 Table 3: Results of the Cox Proportional Hazard Regression Analysis for Mortality and Hospitalization

Multidimensional approach to non-cystic fibrosis bronchiectasis: the FACED score

Miguel Á. Martínez-García^{1,2}, Javier de Gracia^{2,3,4}, Monserrat Vendrell Relat^{2,5}, Rosa-Maria Girón⁶, Luis Máiz Carro⁷, David de la Rosa Carrillo⁸ and Casilda Olveira⁹

Affiliations: ¹Pneumology Service, Hospital Universitario y Politécnico La Fe, Valencia, ²CIBER de Enfermedades Respiratorias, Banyoles, ³Pneumology Service, Hospital Vall D'Hebrón, Barcelona, ⁴Universidad Autónoma de Barcelona, Barcelona, ⁵Pneumology Service, Institut d'Investigació Biomèdica Girona, Hospital Dr Trueta, Girona, ⁶Pneumology Service, Hospital La Princesa, Madrid, ⁷Pneumology Service, Hospital Ramón y Cajal, Madrid, ⁸Pneumology Unit, Hospital Plató, Barcelona, and ⁹Pneumology Service, Hospital Universitario Regional de Málaga, Insituto de Biomedicina de Málaga, Univesidad de Málaga, Málaga, Spain.

Correspondence: M.Á. Martínez-García, Servicio de Neumología, Hospital Universitario y Politécnico La Fe, Valencia, Carrera Malilla s/n, 46006, Valencia, Spain. E-mail: mianmartinezgarcia@gmail.com

Eur Respir J 2014; 43: 1357–1367

FACED score

F: forced expiratory volume in 1 s % predicted (cut-off 50%, maximum value 2 points);

A: age (cut-off 70 years, maximum value 2 points);

C: chronic colonisation by Pseudomonas aeruginosa (maximum value 1 point);

E: radiological extension (lobes affected, cut-off two lobes, maximum value 1 point);

D: dyspnea (cut-off grade II on the mMRC scale, maximum value 1 point)

	OR (95% CI)	p-value	β-coefficient	
			Initial	Rounded
Age >70 years <i>versus</i> ≤70 years	4.98 (2.67-9.28)	0.0001	1.61	2
Dyspnoea mMRC score III-IV versus I-II	2.75 (1.46-5.18)	0.002	1.01	1
Post-bronchodilator FEV1 <50% versus ≥50% predicted	5.19 (2.76-9.75)	0.0001	1.65	2
Extension >2 lobes versus 1-2 lobes	1.87 (1.01-3.46)	0.04	0.62	1
Chronic colonisation by <i>Pseudomonas aeruginosa</i> yes versus no	2.37 (1.28–4.58)	0.006	0.86	1

TABLE 5 Predictive capacity for mortality of the different dichotomised variables included in the final score

mMRC: modified Medical Research Council; FEV1: forced expiratory volume in 1 s.

TABLE 6 Final score, cut-off points of the dichotomised variables and scoring of each variable

Chronic colonisation by Pseudomonas aeruginosa	
No	0
Yes	1
Dyspnoea mMRC score	
0–11	0
III-IV	1
FEV1 % predicted	
≥50%	0
<50%	2
Age	
<70 years	0
≥70 years	2
Number of lobes	
1–2	0
>2	1

Maximum score 7 points. mMRC: modified Medical Research Council; FEV1: forced expiratory volume in 1 s.

Eur Respir J 2014; 43: 1357–1367

Points

Eur Respir J 2014; 43: 1357–1367

Summary

Age BMI FEV1 Admissions Exacerbations MRC Colonization Radiologic severity

FEV1 Age Chronic Colonization Extension Dyspnea

Multidimensional severity assessment in bronchiectasis: an analysis of seven European cohorts. McDonnell MJ, et al. Thorax 2016;71:1110–1118

BSI FACED score

Comorbidities and the risk of mortality in patients with bronchiectasis: an international multicentre cohort study Melissa J McDonnell et al. Lancet Respir Med 2016; 4: 969–79

*Comorbidity with a significantly higher prevalence in non-

Table 1: Derivation cohort patient characteristics

Comorbidities and the risk of mortality in patients with bronchiectasis: an international multicentre cohort study Melissa J McDonnell et al. Lancet Respir Med 2016; 4: 969–79

The Role of the High-Sensitivity C-Reactive Protein in Patients with Stable Bronchiectasis

Pulmonary Medicine 2013

HRCT

More score...

Distance-saturation product of the 6-minute walk test predicts mortality of patients with non-cystic fibrosis bronchiectasis

Meng-Heng Hsieh¹, Yueh-Fu Fang¹, Fu-Tsai Chung¹, Chung-Shu Lee¹, Yu-Chen Chang², Yuan-Zhang Liu³, Cheng-Hsien Wu³, Horng-Chyuan Lin¹

¹Department of Thoracic Medicine, ²Department of Nuclear Medicine, ³Department of Radiology, Chang Gung Medical Foundation, Chang Gung University, College of Medicine, Taoyuan, Taiwan

Contributions: (I) Conception and design: MH Hsieh, YF Fang, HC Lin; (II) Administrative support: MH Hsieh, YF Fang, HC Lin; (III) Provision of study materials or patients: MH Hsieh, FT Chung, CS Lee, YC Chang, YZ Liu, HC Lin; (IV) Collection and assembly of data: MH Hsieh, FT Chung, CS Lee, YC Chang, YZ Liu, HC Lin; (IV) Collection and assembly of data: MH Hsieh, FT Chung, CS Lee, YC Chang, YZ Liu, HC Lin; (IV) Collection and assembly of data: MH Hsieh, FT Chung, CS Lee, YC Chang, YZ Liu, HC Lin; (IV) Collection and assembly of data: MH Hsieh, FT Chung, CS Lee, YC Chang, YZ Liu, CH Wu, HC Lin; (V) Data analysis and interpretation: MH Hsieh, YF Fang, YC Chang, CH Wu, HC Lin; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Horng-Chyuan Lin. Department of Thoracic Medicine, Chang Gung Medical foundation, Chang Gung University, Taoyuan, Taiwan. Email: lin53424@ms13.hinet.net.

J Thorac Dis 2017; 9(9): 3168-3176

Six-min walking test

	Pre-Exercise			Post-Exercise	
FUNCTION	PRED	MEAS	%PR	MEAS	%CH
FVC	3.26	0.95	29	0.90	10
FEV.D	0 00	0.21	1 0	0.23	10
FEVI	2.05	0.30	10	0.33	7
FEV3		0.05		0.00	1.6
FEV1%C	69 8	31 6	45	36 7	16
FEV3%T	05.0	51.0	40	00.7	10
FEV3%G		62 1		70.0	13
MEER		0.04		0.04	0
MMEE	3.35	0.13	4	0.15	15
EX TIME	0.00	6.95		5.48	-20
V EXT		0.02		0.03	50
FIVC		1.05		0.90	-11
FIV.5		0.46		0.51	9
FIV1		0.83		0.82	0
FIV1/FVC		87.4		91.1	4
FIV1/FIVC		79.0		91.1	15
FEV.5/FIV.5		0.46		0.45	0
O2 sat (%)		93%		85%	
Heart rate (/min)		120		112	
6 MWD (m)	120				

DSP: Distance-Saturation Product

The product of the final distance walked in meters and the lowest room air oxygen saturation during the 6-min walk test.

For example, a patient walking a total of 300m who's lowest oxygen saturation fell to 90% would have a DSP of 270 m% (e.g., 300×0.90). Respiratory Medicine (2006) 100, 1734–1741

The distance-saturation product predicts mortality in idiopathic pulmonary fibrosis $\stackrel{\mbox{\tiny\scale}}{\sim}$

Christopher J. Lettieri^{a,*}, Steven D. Nathan^b, Robert F. Browning^a, Scott D. Barnett^b, Shahzad Ahmad^b, Andrew F. Shorr^c

^aPulmonary & Critical Care Medicine, Walter Reed Army Medical Center, 6900 Georgia Ave., NW, Washington, DC 20307, USA ^bLung Transplant Program, Inova Fairfax Hospital, Falls Church, VA, USA ^cPulmonary & Critical Care Medicine, Washington Hospital Center, Washington, DC, USA

DSP predicts mortality in IPF

Resp Med 2006; 100; 1734-1741

Figure 4 Kaplan-Meier survival curve for patients with non-CF bronchiectasis grouped by distance-saturation product (DSP, cutoff value: 280 m%) during the 6MWT (blue line: higher group; P<0.001). Non-CF, non-cystic fibrosis; 6MWT, 6-minute walk test.

GOLD 2019 Report: Chapters

Global Initiative for Chronic Obstructive Lung Disease

GLOBAL STRATEGY FOR THE DIAGNOSIS, MANAGEMENT, AND PREVENTION OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE 2019 REPORT

- 1. Definition and Overview
- 2. Diagnosis and Initial Assessment
- Evidence Supporting Prevention
 & Maintenance Therapy
- 4. Management of Stable COPD
- 5. Management of Exacerbations
- 6. COPD and Comorbidities

GOLD 2014 - Should be actively looked for and treated appropriately if present

Bacterial microbiome of lungs in COPD and BE
Bronchiectasis, Exacerbation Indices, and Inflammation in COPD

BACTERIAL ISOLATES

Figure 2. Potential pathogens isolated in 52 sputum samples. BC = Branhamella catarrhalis; E = Enterobacter species; HI = Haemophilus influenzae; HP = Haemophilus parainfluenzae; K = Klebsiella species; PA = Pseudomonas aeruginosa; SA = Staphylococcus aureus; SP = Streptococcus pneumoniae. 52 sputum samples were obtained from patients in the stable state, of which 43 (82.7%) were spontaneous and 9 (17.3%) were induced samples.

AJRCCM 170. pp 400-407, 2004

Factors Associated With Bronchiectasis in Patients With COPD

Table 3—Analytic, Microbiologic, and Functional Characteristics of Subjects With COPD, With and Without Bronchiectasis

Paramotor	Whole Crown	COPD With	COPD Without	P Valuo
	whole Group	DIOIICIIIeCtasis	DIOIICILIECTASIS	1 value
Subjects, No. (%)	92	53 (57.6)	39 (42.4)	
Fibrinogen, mg/dL	397 (86.3)	417.2 (93.6)	367.9 (66.6)	.008
Albumin, mg/dL	4.21 (0.35)	4.14 (0.39)	4.31 (0.26)	.025
CRP, IU/mL	7.94 (12.2)	9.9(15.5)	5.2(4.09)	ns
α ₁ -Antitrypsin, ng/dL	162.1 (30.5)	166.3(29.2)	156.1(31.8)	ns
Po ₂ /Pco ₂ , mm Hg	63.4/42.9	61.9/43.4	65.4/42.3	ns
FEV ₁ /FVC, % predicted	47.6 (11.8)	45.1 (11,9)	51.2(10.1)	.02
Post-BD FEV ₁ , mL	1,210 (433)	1,107 (397)	1,350 (446)	.007
% Predicted	49.9 (15.6)	46.4 (16,3)	54.8 (13.3)	.01
Post-BD FVC, mL	2,607 (753)	2,478 (659)	2,783 (841)	ns
% Predicted	80 (18.6)	77.3 (18.2)	83.7 (18.7)	ns
$\text{FEV}_1 \le 50\%$, No. (%)	51(55.4)	37 (69.8)	14(35.9)	.001
Patients with at least one PPM isolate, No. (%) ^a	39 (42.4)	25(47.2)	14(35.9)	.01
Patients with chronic colonization by PPM, No. (%)	20 (21.7)	18 (33.9)	2(5.1)	.001
Pseudomonas aeruginosa isolates, No. (%)	7 (7.6)	6 (11.3)	1(2.6)	ns
Haemophilus influenzae isolates, No. (%)	28 (30.4)	20 (37.7)	8 (20.5)	ns

CHEST 2011; 140(5):1130–1137

Factors Associated With Bronchiectasis in Patients With COPD

Table 4—PPMs Found During the Study

	COPD	With Bronchiectasis	COPD Without Bronchiectasis		
PPM	Isolation ^a $(n = 25)$	Chronic Colonization $(n = 18)$	Isolation ^a $(n = 14)$	Chronic Colonization $(n = 2)$	
Haemophilus influenzae	12	8	6	2	
Streptococcus pneumoniae	6	3	4	0	
Moraxella catarrhalis	4	2	3	0	
Pseudomonas aeruginosa	2	4	1	0	
Haemophilus parainfluenzae	0	1	0	0	
Klebsiella pneumoniae	1	0	0	0	

Data from the 44 patients with single isolates of a PPM (left-hand column) or chronic colonization by PPMs (right-hand column). See Table 3 legend for expansion of abbreviation.

^aEighteen patients with a single PPM isolate, plus six patients with two separate PPM isolates, plus nine patients with chronic PPM colonization and positive cultures for a separate PPM during the study. Isolates that form part of a chronic colonization were not included (a chronic colonization was defined as at least three isolates in three different months).

CHEST 2011; 140(5):1130–1137

GOLD report 2019

Global Initiative for Chronic Obstructive Lung Disease

GLOBAL STRATEGY FOR THE DIAGNOSIS MANAGEMENT AND PREVENTION OF

With increasing use of CT in the assessment of patients with COPD, the presence of previous unrecognized BE is being identified.

Whether this diagnosis on radiological criteria has the same impact as a clinical diagnosis of BE remains unknown at present, although it is associated with longer exacerbations and increasing mortality.

Global Initiative for Chronic Obstructive Lung Disease

GLOBAL STRATEGY FOR THE DIAGNOSIS, MANAGEMENT, AND PREVENTION OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE 2019 REPORT

BE should be treated according to usual guidelines.

GOLD report 2019

Regarding COPD treatment, some patients may need more aggressive and prolonged antibiotic therapy. Inhaled corticosteroids may not be indicated in patients with bacterial colonization or recurrent lower respiratory tract infections.

Outline

>Introduction

The assessment of Non-Cystic Fibrosis Bronchiectasis (Non-CF BE)

The impact of NTM and Pseudomonas on Non-CF BE

➢ Summary

The impact of Pseudomonas on Non-CF Bronchiectasis

The effect of Pseudomonas aeruginosa on pulmonary function in patients with bronchiectasis

FIGURE 1. Comparison of baseline forced expiratory volume in one second (FEV1) with pseudomonas status. \bigcirc : developed chronic *Pseudomonas aeruginosa* infection. % pred: % predicted. #: p<0.005.

G. Daves. Et al. Eur Respir J 2006; 28: 974–979

ORIGINAL RESEARCH

A Comprehensive Analysis of the Impact of *Pseudomonas aeruginosa* Colonization on Prognosis in Adult Bronchiectasis

Simon Finch¹, Melissa J. McDonnell², Hani Abo-Leyah¹, Stefano Aliberti³, and James D. Chalmers¹

¹Tayside Respiratory Research Group, University of Dundee, Ninewells Hospital and Medical School, Dundee, United Kingdom; ²Department of Respiratory Medicine, Galway University Hospitals, Galway, Ireland; and ³Department of Health Science, University of Milan-Bicocca, Pneumology Clinic, San Gerardo Hospital, Monza, Italy

Annals ATS Volume 12 Number 11 | November 2015

	Pse	udomo	nas	Non-F	seudom	onas		Mean Difference	Mean	Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Rano	lom, 95% Cl
Aliberti 2014	2.74	1.98	39	1.55	2.1	162	12.2%	1.19 [0.49, 1.89]		
Chalmers 2014	2.85	1.5	70	1.8	1.4	538	20.4%	1.05 [0.68, 1.42]		
Chalmers 2015	2.4	1.4	44	1.9	1.4	242	18.2%	0.50 [0.05, 0.95]		
Kelly 2003	5.52	3.47	21	4.57	3.57	56	3.1%	0.95 [-0.80, 2.70]		
King 2007	4.1	1.7	27	3.5	1.8	43	9.9%	0.60 [-0.24, 1.44]		
McDonnell 2014	4.6	2.6	47	4.3	3.3	108	8.1%	0.30 [-0.67, 1.27]		+
McDonnell 2015	3.9	1.2	34	2.9	0.9	178	18.9%	1.00 [0.58, 1.42]		
Rogers 2014	6.1	3	26	3.5	1.4	34	5.6%	2.60 [1.35, 3.85]		
Tsang 2000	4.1	3.46	22	2.1	1.02	8	3.6%	2.00 [0.39, 3.61]		
Total (95% CI)			330			1369	100.0%	0.97 [0.64, 1.30]		•
Heterogeneity: Tau ² =	= 0.10; 0	Chi ² = 1	15.37, d	lf = 8 (P =	= 0.05); I	² = 48%	6	H		+
Test for overall effect	: Z = 5.7	′8 (P <	0.0000	1)				-4	-2	0 2 4
		-		-					Pseudomonas protective	Pseudomonas harmful

Figure 4. Exacerbation frequency compared between patients with *Pseudomonas aeruginosa* colonization and patients without *P. aeruginosa* colonization. CI = confidence interval; IV = inverse variance.

The independent contribution of Pseudomonas aeruginosa infection to long-term clinical outcomes in bronchiectasis

Kaplan–Meier log-rank test survival curve and univariate analysis for mortality: chronic Pseudomonas aeruginosa (PA) infection versus all other patients

Eur Respir J 2018; 51: 1701953

Characterization of the "Frequent Exacerbator Phenotype" in BE

James D. Chalmers1

AJRCCM Vol 197, Iss 11, pp 1410–1420, Jun 1, 2018

Characterization of the "Frequent Exacerbator Phenotype" in BE

James D. Chalmers

Table 2. Adjusted and Unadjusted Incident Rate Ratios for Exacerbation Frequency during Follow-up

	I	Unadjusted			Adjusted			
	IRR	95% CI	P Value	IRR	95% CI	P Value		
0 Exacerbations 1 Exacerbation 2 Exacerbations	1.0 (reference) 1.73 3.14	1.47-2.02	<0.0001 <0.0001	1.0 (reference) 1.81 3.07	1.54-2.12	<0.0001 <0.0001		
3 Exacerbations	5.97	5.27-6.78	< 0.0001	5.18	4.51-5.95	< 0.0001		
Age (per 10 yr) Sex (M) MRC dyspnea score FEV ₁ % predicted (per 10%) Reiff score Smoking history Haemophilus influenzae Moraxella catarrhalis Staphylococcus aureus Enterobacteriaceae	1.00 1.11 1.24 0.88 1.04 1.22 1.07 0.94 1.19 1.30	0.96-1.03 1.00-1.23 1.19-1.29 0.87-0.90 1.03-1.06 1.10-1.35 0.96-1.20 0.78-1.14 0.97-1.45 1.08-1.57	$\begin{array}{c} 0.8\\ 0.04\\ < 0.0001\\ < 0.0001\\ < 0.0001\\ < 0.0001\\ 0.2\\ 0.5\\ 0.1\\ 0.006\end{array}$	0.96 0.95 1.02 0.96 1.02 0.95 1.13 0.94 1.08 0.99	0.95-1.03 0.86-1.06 0.97-1.07 0.94-0.98 1.00-1.03 0.85-1.06 1.01-1.28 0.77-1.15 0.88-1.32 0.82-1.20	0.6 0.4 0.001 0.05 0.3 0.04 0.5 0.5 0.9		
<i>Pseudomonas aeruginosa</i> Astnma COPD Idiopathic	1.94 1.22 1.89 0.72	1.69–2.23 1.03–1.44 1.66–2.16 0.65–0.79	<0.0001 0.02 <0.0001 <0.0001	1.20 1.16 1.43 0.92	1.04–1.40 0.98–1.38 1.22–1.67 0.83–1.02	0.01 0.09 <0.0001 0.1		

Definition of abbreviations: CI = confidence interval; COPD = chronic obstructive pulmonary disease; IRR = incident rate ratio; MRC = Medical Research Council.

AJRCCM Vol 197, Iss 11, pp 1410–1420, Jun 1, 2018

The prevalence of NTM on Non-CF Bronchiectasis

Variable	NTM positive	NTM negative	<i>p</i> -value
	(<i>n</i> = 18)	(n = 200)	
Age, yr ^a	64 (13.3)	54.9 (15.9)	0.02
Age≥ 50 years	15 (83.3 %)	126 (63 %)	0.06
Gender (% females) ^b	78 %	60 %	0.2
BMI, kg/m ^{2a}	23.5 (4.8)	24.9 (4.6)	0.24
BMI≦23 kg/m ^{2b}	11 (61.1 %)	65 (32.5 %)	0.034
Idiopathic	5 (27.8 %)	60 (30 %)	0.79
Post-infection	6 (33.3 %)	72 (36 %)	
Systemic diseases	4 (22.2 %)	24 (12 %)	
Immunodeficiency	1 (5.6 %)	4 (2 %)	
COPD	2 (11.1 %)	28 (14 %)	
Ciliary dyskinesia	0	7 (3.3 %)	
Other	0	5 (2.5 %)	
Smoking history (pack-years) ^c	22.2 (33)	11.6 (25.6)	0.2
Dyspnea (mMRC)	1.29 (1.3)	1.33 (1.13)	0.8
Macroscopic appearance of sputum (muco-purulent or purulent) ^a	7 (39 %)	125 (62.5 %)	0.045
Cystic bronchiectasis ^b	4 (22 %)	52 (26 %)	0.7
Number of affected lobes ^a	2.9 (1.3)	2.6 (1.2)	0.2
FVC, % predicted ^a	82.5 (23)	73.5 (24)	0.09
FVC \ge 75 % predicted ^b	14 (77.8 %)	94 (47 %)	0.011
FEV ₁ , % predicted ^a	72.3 (26)	63 (25)	0.15
Chronic P. aeruginosa infection ^b	5 (28 %)	88 (44 %)	0.1
Chronic H. influenzae infection ^b	2 (11 %)	46 (23 %)	0.1
Chronic bacterial infection, other PPMs ^b	2 (12 %)	90 (45 %)	0.05

Adult Patients With Bronchiectasis A First Look at the US Bronchiectasis Research Registry

TABLE 2] Symptoms in Patients With Bronchiectasis by NTM Status^a

Symptom	Data Available (No.)	Overall (N = 1,826)	NTM (n = 1,158)	No NTM (n = 668)	P Value ^b
Fatigue, No. (%)	1,770				
Yes		886 (50)	591 (53)	295 (46)	< .01
Daily bouts of coughing, No. (%)	1,804				
Yes, any		1,314 (73)	825 (72)	489 (74)	.32
Daily productive cough, No. (%)	1,788				
Yes, productive cough		951 (53)	568 (50)	383 (59)	< .01
Hemoptysis, No. (%)	175				
Yes		409 (23)	283 (25)	126 (19)	< .01
Dyspnea, No. (%)	1,442				
No, not at rest or when active		663 (46)	420 (46)	243 (46)	.98
Yes, only when active		779 (54)	493 (54)	286 (54)	

Timothy R. Aksamit, MD et al. CHEST 2017; 151(5):982-992

Adult Patients With Bronchiectasis A First Look at the US Bronchiectasis Research Registry

TABLE 3] Spirometric Test Results for Patients With Bronchiectasis

Poculto	Data Available	Overall $(N - 1.826)$	NTM $(n - 1.158)$	No NTM	P Value ^a
Results	(110.)	(11 = 1,020)	(11 = 1,130)	(11 = 000)	r value
Prebronchodilator findings, No. (%) ^b	1,552				
$\label{eq:FEV_1/FVC} \begin{split} \text{FEV}_1 / \text{FVC} &\geq 0.70, \ \text{FVC} \geq 0.80, \ \text{and} \ \text{FEV}_1 \geq 0.80 \\ \text{(normal)} \end{split}$		399 (26)	252 (26)	147 (26)	
$\text{FEV}_1/\text{FVC} \geq 0.70, \text{FVC} \geq 0.80, \text{and} \text{FEV}_1 < 0.80$ (nearly normal)		363 (23)	229 (23)	134 (24)	
Any obstruction		790 (51)	502 (51)	208 (51)	.86
Mild or moderate obstruction		555 (36)	366 (37)	189 (33)	.11
Severe or very severe obstruction		235 (15)	136 (14)	99 (17)	.06
Restriction		317 (20)	200 (20)	117 (21)	.92
Postbronchodilator findings, No. (%) ^c	963				
FVC or FEV ₁ improved $\geq 12\%$		47 (5)	33 (5)	14 (4)	

Timothy R. Aksamit, MD et al. CHEST 2017; 151(5):982-992

Increasing Incidence of Nontuberculous Mycobacteria, Taiwan, 2000–2008

Emerging Infectious Diseases Vol. 16, No. 2, 2010: 294-296

NTM Species

 M. avium Completion M. kansasii M. abscessus 275 is M. chelonae 	ex (MAC) olates from 279 patients olates from 174 patients	M. marinum M. mucogenicum M. nonchromogenicum M. scrofulaceum
 <i>M. fortuitum</i> 258 is <i>M. genavense</i> 	olates from 186 patients Slow-growing NTM M. avium complex	Rapidly growing NTM <i>M. fortuitum</i> ^a
M. gordonaeM. haemophilum	M. kansasii M. malmoense M. manani	M. abscessus M. chelonae ^a M. colatum ^a
M. immunogenumM. malmoense	M. xenopi M. szulgai ^a M. scofulaceum ^a M. simiae ^a	M. cetatum"
An Official ATS/IDSA Statement	^a Uncommon NTUH 2009	

Nontuberculous Mycobacteria in Respiratory Tract Infections, Eastern Asia

Emerging Infectious Diseases Vol. 17, No. 3, 2011: 343-349

Dovepress open access to scientific and medical research

ORIGINAL RESEARCH

Impact of concomitant nontuberculous mycobacteria and *Pseudomonas aeruginosa* isolates in non-cystic fibrosis bronchiectasis

I his article was published in the following Dove Press journal: Infection and Drug Resistance

Meng-Heng Hsieh^{1,2,*} Chun-Yu Lin^{1-3,*} Chen-Yu Wang² Yueh-Fu Fang¹⁻³ Yu-Lun Lo^{1,2} Shu-Min Lin^{1,2} Horng-Chyuan Lin^{1,2}

¹Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; ²Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, **Purpose:** *Pseudomonas aeruginosa* is associated with pulmonary function decline and high disease severity in non-cystic fibrosis (CF) bronchiectasis. The prevalence of nontuberculous mycobacteria (NTM) in non-CF bronchiectasis patients has increased recently. This study investigated the impact of NTM with or without *P. aeruginosa* isolates in non-CF bronchiectasis patients. **Patients and methods:** Our retrospective study included 96 non-CF bronchiectasis patients from January 2005 to December 2014. We recorded the presentation, exacerbations, emergency department (ED) visits, hospitalization, serial pulmonary function, radiologic studies, and sputum culture results. All patients were followed up for at least 2 years.

Results: The 96 patients were divided into four groups: patients with concomitant negative NTM and *P. aeruginosa* isolates (n=41; group 1), patients with positive NTM isolates (n=20; group 2), patients with positive *P. aeruginosa* isolates (n=20; group 3), and patients with concomitant positive NTM and *P. aeruginosa* isolates (n=15; group 4). Compared with group 1

Background

Pseudomonas aeruginosa

Greater pulmonary function decline More frequent exacerbations More hospital admissions Increased mortality

NTM

Prevalence ranges wildly (2%~37%) Increasing in recent years

Material and Methods

Jan 2005 ~ Dec 2014 Linkou Medical Center of Chang Gung Memorial Hospital

Retrospective

Non-CF Bronchiectasis

Results

63

Results

64

Results

Table 3 NTM species isolated from sputum samples in non-CF bronchiectasis patients

NTM species	Group 2	Group 4
	n=20	n=15
	n (%)	n (%)
Mycobacterium avium-Mycobacterium	10 (50)	8 (53.3)
	2 (10)	((10)
Mycobacterium fortuitum	2 (10)	6 (40)
Mycobacterium chelonae	4 (20)	4 (26.7)
Mycobacterium abscessus	2 (10)	3 (20)
Mycobacterium gordonae	2 (10)	2 (13.3)
Mycobacterium kansasii	l (5)	0 (0)
Mycobacterium mageritense	l (5)	0 (0)
Mycobacterium scrofulaceum	0 (0)	l (6.7)
Mycobacterium peregrinum	0 (0)	l (6.7)
Unidentified	4 (20)	2 (13.3)

Abbreviations: CF, cystic fibrosis; NTM, nontuberculous mycobacteria.

Conclusion

NTM isolation in non-CF bronchiectasis greater **FEV1** decline more **Exacerbations** NTM and P. aeruginosa isolations greatest Pulmonary Function Decline most frequent **Exacerbations**

TREATMENT

Treatments

Airway Hygiene

- Mechanical "valve" devices (Flutter, Pep, Acapella, etc)
- Postural drainage and chest physiotherapy

Mucus-Mobilizing Methods

- Inhaled beta-agonists and/or anticholinergic bronchodilators
- Hypertonic saline or mannitol inhalation
- Anti-inflammatory Airway Management
 - Inhaled steroids (ICS)
 - Macrolide antibiotics (MLAs)

Treatments

Anti-aspiration Measures

- Anti-GERD management
- Improved deglutition
- Reducing gastric acid

Antimicrobial Therapy

- Episodic, targeted antibiotics
- Rotating antibiotic therapy
- Initial empirical followed by targeted antibiotics

Surgery

- Intractable massive bleeding
- Uncontrollable infection
- Aspergillus colonization or Aspergilloma

Saccular bronchiectasis

Traction bronchiectasis

2015/04

2016/03

Summary

- The prevalence of non CF bronchiectasis is increasing
- Two prognostic indices that aid clinical decisions are the bronchiectasis severity index (BSI) and the FACED score
- Patients with concomitant positive NTM and P. aeruginosa isolates have the greatest pulmonary function decline and the most frequent AE

Thanks for Your Attention!!

