

2019台灣胸腔暨重症加護醫學會夏季會

2019 Summer Workshop of Taiwan Society of Pulmonary and Critical Care Medicine

Updated guidelines for noninvasive ventilation

馬偕醫院 郭立國醫師

• Strong recommendation

-Hypercapnia with COPD exacerbation -Cardiogenic pulmonary edema

- Conditional recommendation
 - -Immunocompromised
 - -Post-operative
 - -Palliative care
 - -Trauma
 - -Weaning in hypercapnic patients
 - -Post-extubation in high risk patient
- No recommendation
 - -De novo respiratory failure

Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure

Bram Rochwerg ¹, Laurent Brochard^{2,3}, Mark W. Elliott⁴, Dean Hess⁵, Nicholas S. Hill⁶, Stefano Nava⁷ and Paolo Navalesi⁸ (members of the steering committee); Massimo Antonelli⁹, Jan Brozek¹, Giorgio Conti⁹, Miquel Ferrer¹⁰, Kalpalatha Guntupalli¹¹, Samir Jaber¹², Sean Keenan^{13,14}, Jordi Mancebo¹⁵, Sangeeta Mehta¹⁶ and Suhail Raoof^{17,18} (members of the task force)

TABLE 1 Interpretation of strong and conditional recommendations for stakeholders (patients, clinicians and healthcare policy makers)

	Strong recommendation	Weak recommendation
For patients	Most individuals in this situation would want the recommended course of action and only a small proportion would not.	The majority of individuals in this situation would want the suggested course of action, but many would not.
For clinicians	Most individuals should receive the recommended course of action. Adherence to this recommendation according to the guideline could be used as a quality criterion or performance indicator. Formal decision aids are not likely to be needed to help individuals make decisions consistent with their values and preferences.	Different choices are likely to be appropriate for different patients and therapy should be tailored to the individual patient's circumstances. Those circumstances may include the patient or family's values and preferences.
For policy makers	The recommendation can be adapted as policy in most situations including for the use as performance indicators.	Policy making will require substantial debates and involvement of many stakeholders. Policies are also more likely to vary between regions. Performance indicators would have to focus on the fact that adequate deliberation about the management options has taken place.

Conditional Recommendation

Table 4. Paradigmatic situations in which a strong recommendation may be warranted despite low or very low confidence in effect estimates

Situation	Condition	Example
1	When low quality evidence suggests benefit in a life- threatening situation (evidence regarding harms can be low or high)	Fresh frozen plasma or vitamin K in a patient receiving warfarin with elevated INR and an intracranial bleed. Only low quality evidence supports the benefits of limiting the extent of the bleeding
2	When low quality evidence suggests benefit and high quality evidence suggests harm or a very high cost	Head-to-toe CT/MRI screening for cancer. Low quality evidence of benefit of early detection but high quality evidence of possible harm and/or high cost (strong recommendation against this strategy)
3	When low quality evidence suggests equivalence of two alternatives, but high quality evidence of less harm for one of the competing alternatives	Helicobacter pylori eradication in patients with early stage gastric MALT lymphoma with <i>H. pylori</i> positive. Low quality evidence suggests that initial <i>H. pylori</i> eradication results in similar rates of complete response in comparison with the alternatives of radiation therapy or gastrectomy; high quality evidence suggests less harm/morbidity
4	When high quality evidence suggests equivalence of two alternatives and low quality evidence suggests harm in one alternative	Hypertension in women planning conception and in pregnancy. Strong recommendations for labetalol and nifedipine and strong recommendations against angiotensin converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARB)—all agents have high quality evidence of equivalent beneficial outcomes, with low quality evidence for greater adverse effects with ACE inhibitors and ARBs
5	When high quality evidence suggests modest benefits and low/ very low quality evidence suggests possibility of catastrophic harm	Testosterone in males with or at risk of prostate cancer. High quality evidence for moderate benefits of testosterone treatment in men with symptomatic androgen deficiency to improve bone mineral density and muscle strength. Low quality evidence for harm in patients with or at risk of prostate cancer

Abbreviations: INR, international normalized ratio; CT, computed tomography; MRI, magnetic resonance imaging; MALT, mucosa-associated lymphoid tissue.

Journal of Clinical Epidemiology 2013; 66:726-735.

Strength of Recommendations Grading System

Quality Assessment Criteria.

Study Design	Quality of Evidence	Lower if	Higher if
Randomized trial →	High	Risk of bias	Large effect
TAR BOOL PROVINCE CONSISTENCE AND A DAMAGED AND		-1 Serious	+1 Large
		-2 Very serious	+2 Very large
	Moderate	Inconsistency	Dose response
		-1 Serious	+1 Evidence of a gradient
		-2 Very serious	
			All plausible confounding
Observational study	Low	Indirectness	+1 Would reduce a
		-1 Serious	demonstrated effect or
		-2 Very serious	
			+1 Would suggest a
		Imprecision	spurious effect when
	Very low	-1 Serious	results show no effect
		-2 Very serious	
		Publication bias	
		-1 Likely	
		-2 Very likely	

Journal of Clinical Epidemiology 2011; 64:383-394.

 $\begin{array}{l} \text{Arterial pH} \\ \text{P}_{\text{aCO}_2} \\ \text{Alveolar P}_{\text{O}_2} \end{array}$

 S_{aO_2} Alveolar P_{CO_2}

RESPIRATORY CARE 2019; 64:617-628.

RESPIRATORY CARE 2019; 64:617-628.

Underutilization of NIV

Annals of Thoracic Medicine 2018; 13:237-242.

Annals of Thoracic Medicine 2018; 13:237-242.

Respondents' Confidence Rate of NIV

Clinical indication [#]	Certainty of evidence [¶]	Recommendation	
Prevention of hypercapnia in COPD exacerbation	$\oplus \oplus$	Conditional recommendation against	
Hypercapnia with COPD exacerbation	$\oplus \oplus \oplus \oplus$	Strong recommendation for	
Cardiogenic pulmonary oedema	$\oplus \oplus \oplus$	Strong recommendation for	
Acute asthma exacerbation		No recommendation made	
Immunocompromised	$\oplus \oplus \oplus$	Conditional recommendation for	
De novo respiratory failure		No recommendation made	
Post-operative patients	$\oplus \oplus \oplus$	Conditional recommendation for	
Palliative care	$\oplus \oplus \oplus$	Conditional recommendation for	
Trauma	$\oplus \oplus \oplus$	Conditional recommendation for	
Pandemic viral illness		No recommendation made	
Post-extubation in high-risk patients (prophylaxis)	$\oplus \oplus$	Conditional recommendation for	
Post-extubation respiratory failure	$\oplus \oplus$	Conditional recommendation against	
Weaning in hypercapnic patients	$\oplus \oplus \oplus$	Conditional recommendation for	

*: all in the setting of acute respiratory failure; 1 : certainty of effect estimates: $\oplus \oplus \oplus \oplus$, high; $\oplus \oplus \oplus$, moderate; $\oplus \oplus$, low; \oplus , very low.

Clinical indication [#]	Certainty of evidence ¹	Recommendation	
Prevention of hypercapnia in COPD exacerbation	$\oplus \oplus$	Conditional recommendation against	
Hypercapnia with COPD exacerbation	$\oplus \oplus \oplus \oplus$	Strong recommendation for	
Cardiogenic pulmonary oedema	$\oplus \oplus \oplus$	Strong recommendation for	
Acute asthma exacerbation		No recommendation made	
Immunocompromised	$\oplus \oplus \oplus$	Conditional recommendation for	
De novo respiratory failure		No recommendation made	
Post-operative patients	$\oplus \oplus \oplus$	Conditional recommendation for	
Palliative care	$\oplus \oplus \oplus$	Conditional recommendation for	
Trauma	$\oplus \oplus \oplus$	Conditional recommendation for	
Pandemic viral illness		No recommendation made	
Post-extubation in high-risk patients (prophylaxis)	hylaxis) $\oplus \oplus$ Conditional recommendation for		
Post-extubation respiratory failure	AA	Conditional recommendation against	
Weaning in hypercapnic patients	$\oplus \oplus \oplus$	⊕⊕⊕ Conditional recommendation for	

[#]: all in the setting of acute respiratory failure; [¶]: certainty of effect estimates: ⊕⊕⊕⊕, high; ⊕⊕⊕, moderate; ⊕⊕, low; ⊕, very low.

Clinical indication [#]	Certainty of evidence ¹	Recommendation	
Prevention of hypercapnia in COPD exacerbation	$\oplus \oplus$	Conditional recommendation against	
Hypercapnia with COPD exacerbation	$\oplus \oplus \oplus \oplus$	Strong recommendation for	
Cardiogenic pulmonary oedema	$\oplus \oplus \oplus$	Strong recommendation for	
Acute asthma exacerbation		No recommendation made	
Immunocompromised	$\oplus \oplus \oplus$	Conditional recommendation for	
De novo respiratory failure		No recommendation made	
Post-operative patients	$\oplus \oplus \oplus$	Conditional recommendation for	
Palliative care	$\oplus \oplus \oplus$	Conditional recommendation for	
Trauma	$\oplus \oplus \oplus$	Conditional recommendation for	
Pandemic viral illness		No recommendation made	
Post-extubation in high-risk patients (prophylaxis)	$\oplus \oplus$	Conditional recommendation for	
Post-extubation respiratory failure	$\oplus \oplus$	Conditional recommendation against	
weaming in hypercaphic patients	ውወቅ	Conditional recommendation for	

*: all in the setting of acute respiratory failure; ¹: certainty of effect estimates: $\oplus \oplus \oplus \oplus$, high; $\oplus \oplus \oplus$, moderate; $\oplus \oplus$, low; \oplus , very low.

Clinical indication [#]	Certainty of evidence ¹	Recommendation	
Prevention of hypercapnia in COPD exacerbation Hypercapnia with COPD exacerbation	$\begin{array}{c} \oplus \oplus \\ \oplus \oplus \oplus \oplus \oplus \\ \oplus \oplus \oplus \oplus \end{array}$	Conditional recommendation against Strong recommendation for Strong recommendation for	
Acute asthma exacerbation		No recommendation made	
De novo respiratory failure		No recommendation made	
Post-operative patients	$\oplus \oplus \oplus$	Conditional recommendation for	
Palliative care	$\oplus \oplus \oplus$	Conditional recommendation for	
Trauma	$\oplus \oplus \oplus$	Conditional recommendation for	
Pandemic viral illness		No recommendation made	
Post-extubation in high-risk patients (prophylaxis)	$\oplus \oplus$	Conditional recommendation for	
Post-extubation respiratory failure	$\oplus \oplus$	Conditional recommendation against	
Weaning in hypercapnic patients	$\oplus \oplus \oplus$	Conditional recommendation for	

#: all in the setting of acute respiratory failure; [¶]: certainty of effect estimates: ⊕⊕⊕⊕, high; ⊕⊕⊕, moderate; ⊕⊕, low; ⊕, very low.

2019台灣胸腔暨重症加護醫學會夏季會

2019 Summer Workshop of Taiwan Society of Pulmonary and Critical Care Medicine

Hypercapnia with COPD exacerbation

Recommendation

- We suggest NIV not be used in patients with hypercapnia who are not acidotic in the setting of a COPD exacerbation.
- (Conditional recommendation, low certainty of evidence)

Bilevel NIV to prevent intubation

- improvement in **pH or respiratory rate**, is a good predictor of a successful outcome
- response is almost universally seen within the first 1–4 h after NIV
- 🗼 dyspnoea
- \downarrow intubation rate
- \downarrow ICU admission
- \downarrow hospital length of stay
- \downarrow respiratory and nonrespiratory infection
- ↑ survival

Recommendations

- We recommend bilevel NIV for patients with ARF leading to acute or acute-on-chronic respiratory acidosis (pH ≤7.35) due to COPD exacerbation.
- (Strong recommendation, high certainty of evidence.)

Recommendations

- We recommend a trial of bilevel NIV in patients considered to require endotracheal intubation and mechanical ventilation, unless the patient is immediately deteriorating.
- (Strong recommendation, moderate certainty of evidence.)

Implementation considerations

• Bilevel NIV should be considered when the pH is ≤7.35, PaCO2 is >45 mmHg and the respiratory rate is >20–24 breaths/min despite standard medical therapy.

- Bilevel NIV remains the preferred choice for patients with COPD who develop acute respiratory acidosis during hospital admission.
- There is no lower limit of pH below which a trial of NIV is inappropriate
- However, the lower the pH, the greater risk of failure, and patients must be very closely

monitored with rapid access to endotracheal intubation and invasive ventilation if not improving.

2019台灣胸腔暨重症加護醫學會夏季會

2019 Summer Workshop of Taiwan Society of Pulmonary and Critical Care Medicine

NIV in cardiogenic pulmonary edema

The increasing use of NIV in cardiogenic pulmonary edema (CPE)

CHF is the **2nd** most popular indication

The use of NIV in CPE is still increasing

Eur Heart J. 2018 Jan 1;39(1):17-25 Crit Care Med 2005;33:1477–83

Physiological effect of PEEP

Table 2Main physiologic effects of positiveintrathoracic pressure

Cardiovascular

- \downarrow Venous return $\rightarrow \downarrow$ RV preload $\rightarrow \downarrow$ LV preload
- \uparrow Pulmonary vascular resistance $\rightarrow \uparrow$ RV afterload \rightarrow RV enlargement
 - $\rightarrow \downarrow$ LV Compliance
- \downarrow LV afterload (\downarrow systolic wall stress)
- \downarrow Systemic blood pressure $\rightarrow \downarrow$ Cardiac output^a

Respiratory

- Recruitment of collapsed alveoli $\rightarrow \uparrow \mathsf{Functional}$ residual capacity
- Maintenance continuously opened alveoli \rightarrow Gas exchange during the
- whole respiratory cycle
- Intra-alveolar pressure against oedema
- \downarrow Work of breathing
- ↑ Oxygenation

ORIGINAL ARTICLE

Noninvasive Ventilation in Acute Cardiogenic Pulmonary Edema

Mean change at 1 hr after start of treatment:

Dyspnea score§	3.9	4.6	0.7 (0.2 to 1.3)	0.008
Pulse rate (beats/min)	13	16	4 (1 to 6)	0.004
Blood pressure (mm Hg)				
Systolic	34	38	3 (-1 to 8)	0.17
Diastolic	22	22	0 (-3 to 3)	0.95
Respiratory rate (breaths/min)	7.1	7.2	0.2 (-0.8 to 1.1)	0.74
Peripheral oxygen saturation (%)	3.5	3.0	-0.4 (-1.4 to 0.6)	0.41
Arterial pH	0.08	0.11	0.03 (0.02 to 0.04)	<0.001
Arterial PaO ₂ (kPa)	0.7	-0.6	-1.2 (-2.6 to 0.1)	0.07
Arterial PaCO ₂ (kPa)	0.8	1.5	0.7 (0.4 to 0.9)	<0.001
Serum bicarbonate level (mmol/liter)	1.7	1.8	0.1 (-0.7 to 1.0)	0.77

CPAP or NIPPV was associated with greater reductions in **dyspnea**, **HR**, **acidosis** and **hypercapnia**

N Engl J Med 2008;359:142-51

ORIGINAL ARTICLE

Noninvasive Ventilation in Acute Cardiogenic Pulmonary Edema

Similar results of other studies

Effect of non-invasive positive pressure ventilation (NIPPV) on mortality in patients with acute cardiogenic pulmonary oedema: a meta-analysis

John Victor Peter, John L Moran, Jennie Phillips-Hughes, Petra Graham, Andrew D Bersten

Summary Background Non-invasive positive pressure ventilation (NIPPV), using continuous positive airway pressure (CPAP) Lancet 2006; 367: 1155-63

Noninvasive Ventilation in Cardiogenic **Pulmonary Edema**

A Multicenter Randomized Trial

Stefano Nava, Giorgio Carbone, Nicola DiBattista, Andrea Bellone, Paola Baiardi, Roberto Cosentini, Mauro Marenco, Fabrizio Giostra, Guido Borasi, and Paolo Groff

Circulation Journal Official Journal of the Japanese Circulation Society http://www.j-circ.or.jp

ORIGINAL ARTICLE

Critical Care

Lancet

AJRCC

Noninvasive Ventilation in Pulmonary Edema Complicating Acute Myocardial Infarction

Circulation journal

Clinical outcomes in Meta-analysis (Death)

Lancet

JAMA

1969 - 2019

Lancet 2006; 367: 1155–63 JAMA. 2005;294:3124-3130

Clinical outcomes in Meta-analysis (Intubation risk)

Lancet

JAMA

0.1

1.0

Risk Ratio (95% Confidence Interval)

10

100

0.01

1969 - 2019

Lancet 2006; 367: 1155–63 JAMA. 2005;294:3124-3130

ERS/ATS guidelines

- We recommend either bilevel NIV or CPAP for patients with ARF due to cardiogenic pulmonary edema
- acute coronary syndrome or cardiogenic shock excluded
- (Strong recommendation, moderate certainty of evidence.)

Guidelines

Society	Recommendation	Evidence
ERS/ATS	We recommend either bilevel NIV or CPAP for patients with ARF due to cardiogenic pulmonary oedema.	Strong recommend, moderate evidence
ESC	Non-invasive positive pressure ventilation (CPAP, BiPAP) should be considered in patients with respiratory distress (respiratory rate >25 breaths/min, SpO2 <90%) and started as soon as possible in order to decrease respiratory distress Blood pressure should be monitored regularly when this treatment is used.	Class: Iia LOE: B
AHA	(No NIV description)	
TSOC	It is recommended that non-invasive ventilation should be initiated as early as possible in acute heart failure patients with dyspnea and respiratory distress if no obvious contraindication	No grading

Eur Respir J 2017; 50: 1602426 Eur Heart J. 2016;37:2129–2200 Acta Cardiol Sin 2012;28:161-195

Eur Heart J. 2018 Jan 1;39(1):17-25

2019台灣胸腔暨重症加護醫學會夏季會

2019 Summer Workshop of Taiwan Society of Pulmonary and Critical Care Medicine

Immunocompromised
NONINVASIVE VENTILATION IN IMMUNOSUPPRESSED PATIENTS WITH PULMONARY INFILTRATES, FEVER, AND ACUTE RESPIRATORY FAILURE

GILLES HILBERT, M.D., DIDIER GRUSON, M.D., FRÉDERIC VARGAS, M.D., RUDDY VALENTINO, M.D., GEORGES GBIKPI-BENISSAN, M.D., MICHEL DUPON, M.D., JOSY REIFFERS, M.D., AND JEAN P. CARDINAUD, M.D.

	NIV	Standard	P
	26	26	
intubation	12(46%)	20 (77%)	0.03
died in ICU	10(38%)	18 (69%)	0.03
died in	13(50%)	21 (81%)	0.02
hospital			

G. HILBERT Et al. NEJM 2001; 344: pp. 481-487

Recommendation

•We suggest early NIV for immunocompromised patients with ARF.

- (Conditional recommendation,
- moderate certainty of evidence.)

TABLE 1. BASE-LINE CHARACTERISTICS OF THE PATIENTS.*

CHARACTERISTIC	Noninvasive- Ventilation Group (N = 26)	Standard- Treatment Group (N=26)
Age — yr	48±14	50±12
Male sex no. (%)	18 (69)	19 (73)
SAPS II†	45±10	42±9
Respiratory rate - breaths/min	35±3	36 ± 3
Heart rate — beats/min	108±16	111 ± 14
Systolic blood pressure - mm Hg	127±19	123 ± 17
Body temperature — °C	38.3 ± 0.6	38.5 ± 0.6
Microbiologic diagnosis of pneumonia — no. (%)±	13 (50)	11 (42)
PaO ₂ :FiO ₂	141 ± 24	136±23
PaCO ₂ — mm Hg	37±4	38±5
Arterial pH	7.45 ± 0.04	7.43 ± 0.04
White-cell count — cells/mm ³		
Patients with immunosuppression from hematologic cancer and neutropenia	264±163	241±147
Patients with other types of immuno- suppression	9980±5290	10,590±5730
Types of immunosuppression — no. (%) Hematologic cancer and neutropenia Bone marrow transplantation High-dose chemotherapy	15 (58) 8 (31) 7 (27)	15 (58) 9 (35) 6 (23)
Drug-induced immunosuppression	9 (35)	9 (35)
Organ transplantation	3(12)	4 (15)
Orthor	4(15) 2(8)	$\frac{5(12)}{2(8)}$
Acquired immunodeficiency syndrome	$\frac{2}{2}$ (8)	2 (8)

G. HILBERT Et al. NEJM 2001; 344: pp. 481-487

Effect of High-Flow Nasal Oxygen vs Standard Oxygen on 28-Day Mortality in Immunocompromised Ratients With Acute Respiratory Failure: The HIGH Randomized Clinical Trial

1969 - 2019

Patient Characteristics at Randomization

JAMA. 2018;320(20):2099-2107.

Table 1. Patient Characteristics at Ran	ndomization							
No. (%)								
Characteristic	High-Flow Oxygen Therapy (n = 388)	Standard Oxygen Therapy (n = 388)						
Demographics								
Age, median (IQR), y	64 (55-70)	63 (56-71)						
Sex								
Men	270 (69.6)	247 (63.6)						
Women	118 (30.4)	141 (36.4)						
Comorbidities								
Chronic								
Respiratory ^a	115 (29.6)	127 (32.7)						
Heart failure	23 (5.9)	27 (6.9)						
Liver	45 (13.3)	56 (14.4)						
Kidney disease	73 (18.8)	69 (20.4)						
Charlson Comorbidity Index ^b	5 (4-7)	5 (3-7)						
Underlying conditions ^c								
Cancer	294 (75.8)	319 (82.2)						
Hematologic malignancies	167 (43.0)	181 (46.6)						
Solid tumors	127 (32.7)	138 (35.6)						
Immunosuppressive drugs	133 (34.3)	135 (34.8)						
Non-transplant-related reasons	89 (22.9)	98 (25.2)						
After solid organ transplantation	44 (11.3)	37 (9.5)						
Time since diagnosis of underlying	6.4 (1-29)	7.0 (0.8-40.0)						

Effect of High-Flow Nasal Oxygen vs Standard Oxygen on 28-Day Mortality in Immunocompromised Patients With Acute Respiratory Failure: The HIGH Randomized Clinical Trial

JAMA. 2018;320(20):2099-2107. doi:10.1001/jama.2018.14282

Table 2. Primary and Secondary End Points ^a										
	No. (%)									
End Points	High-Flow Oxygen Therapy (n = 388)	Standard Oxygen Therapy (n = 388)	— Mean Difference, % (95% CI) ^b	Relative Difference (95% CI)	P Value					
Primary										
All-cause day-28 mortality	138 (35.6)	140 (36.1)	-0.5 (-7.3 to 6.3)	HR, 0.98 (0.77 to 1.24)	.94					
Secondary										
Invasive mechanical ventilation ^c	150 (38.7)	170 (43.8)	-5.1 (-12.3 to 2.0)	HR, 0.85 (0.68 to 1.06) ^d	.17					
ICU-acquired infection	39 (10.0)	41 (10.6)	-0.6 (-4.6 to 4.1)	HR, 1.01 (0.96 to 1.06) ^d	.91					
ICU mortality	123 (31.7)	122 (31.4)	0.3 (-6.3 to 6.8)	RR, 1.01 (0.82 to 1.24)	.64					
Hospital mortality	160 (41.2)	162 (41.7)	-0.5 (-7.5 to 6.4)	RR, 0.99 (0.84 to 1.17)	.77					
Length of stay, median (IQR), d										
ICU	8 (4-14)	6 (4-13)	0.6 (-1.0 to 2.2)	NA ^e	.07					
Hospital	24 (14-40)	27 (15-42)	-2 (-7.3 to 3.3)	NA ^e	.60					

Abbreviations: HR, hazard ratio; ICU, intensive care unit; IQR, interquartile range; NA, not available; RR, relative risk.

^a No patients were lost to follow-up.

^b Mean difference was defined across intervention and controls groups by absolute risk difference for binary outcomes (mortality, invasive mechanical ventilation, infections) and difference in means for quantitative outcomes (lengths of stay in ICU and in hospital).

^c The use of invasive mechanical ventilation was based on the clinical response to oxygen or noninvasive ventilation, clinical status (including oxygen saturation by pulse oximetry [Spo₂], respiratory rate, signs of respiratory distress, and bronchial secretion volume), and patient adherence to noninvasive ventilation. Criteria for invasive mechanical ventilation were severe hemodynamic instability (requiring norepinephrine or epinephrine >0.3 µg/kg/min) or cardiorespiratory

arrest or ongoing myocardial infarction, severe encephalopathy (Glasgow Coma Scale score <11), severe airway secretion retention or worsening of respiratory distress (SpO₂ <92% or respiratory rate >40/min regardless of oxygen flow rate or use of accessory respiratory muscles), inability to maintain Pao₂ greater than 65 mm Hg with fraction of inspired oxygen (Fio₂) greater than 0.6 or dependency on noninvasive ventilation with inability to remain off noninvasive ventilation for longer than 2 hours, greater than 50% increase in the time on noninvasive ventilation from one day to the next (eg, 6 hours of noninvasive ventilation on day 1, then >9 hours on day 2).

^d Cause-specific HR.

^e Effect of high-flow oxygen therapy on length-of-stay measures could not be expressed by HRs.

Immunocompromised patients with acute respiratory distress syndrome: secondary analysis of the LUNG SAFE database

Cortegiani et al. Critical Care (2018) 22:157

				國國產加強
Table 3 Clinical endpoints in immunocompromised	1 NITTE IS	111-		
Clinical endpoints	I.NIV 页	」功的病/	\ 有	<i>p</i> Value
Duration of mechanical ventilation, d, median (Q1-Q	低的no	n-pulmo	nary	0.4352
Progression/regression of ARDS ^a , <i>n</i> (%)	CO		•	
No change	50	FA score		0.4449
Progression	2 使用IN	IV的店人	一开十	0.7199
Regression				0.0045
Resolution	率已	顯著降低	氏	< 0.0001
Limitation of life-sustaining measures, <i>n</i> (%)	•			
Decision to withhold life-sustaining measures				0.9587
Decision to withdraw life-sustaining measures	10		14 (23.7)	0.9480
Decision to withhold or withdraw life-sustaining measures	154	21 (33.3)	20 (33.9)	0.9962
Before IMV or NIV start	1 (0.6	0 (0.0)	1 (5.0)	0.2062
ICU mortality ^d , <i>n</i> (%)	214 (46.3)	18 (28.6) ^b	34 (57.6) ^c	0.0043
Hospital mortality ^e , <i>n</i> (%)				
All patients	242 (52.8)	25 (39.7)	37 (62.7) ^c	0.0362
Patients with limitations of life-sustaining measures ^f	137 (89.0)	17 (81.0)	19 (95.0)	0.3803

Cortegiani et al. Critical Care (2018) 22:157

High flow nasal therapy in immunocompromised patients with acute respiratory failure: A systematic review and meta-analysis

9 - 2019

A. Cortegiani et al. / Journal of Critical Care 50 (2019) 250-256

	HFNT	СОТ		Odds Ratio	Odds Ratio
Study or Subgroup	Events Tota	I Events Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Azoulay et al. 2018	150 388	3 170 388	69.4%	0.81 [0.61, 1.08]	
Frat et al. 2016	8 20	5 13 30	6.5%	0.58 [0.19, 1.75]	
Lemiale et al. 2017	40 90	48 90	21.3%	0.70 [0.39, 1.26]	
Roca et al. 2015	13 22	2 16 18	2.8%	0.18 [0.03, 0.99]	
Total (95% CI)	520	526	100.0%	0.74 [0.55, 0.98]	•
Total events	211	247			
Heterogeneity: Tau ² =	0.01; Chi² = 3.2				
Test for overall effect: 2	Z = 2.11 (P = 0.	Favours HFNT Favours COT			

A. Cortegiani et al. / Journal of Critical Care 50 (2019) 250-256

Conclusion

- Only higher non-pulmonary SOFA score, lower PaO2/ FiO2 ratio and lower improvement of respiratory failure were associated with greater in-hospital mortality
- general conditions, underlying pathologies and ARF aetiology may have more importance than oxygenation strategy for the management of immunocompromised patients.
- The ability of HFNT to reduce respiratory rate and decrease respiratory distress, dyspnoea and improve oxygenation [24-26], may postpone or avoid the need to intubate giving more time to clinicians to investigate the ARF aetiology and to deliver appropriate treatment.
- delaying unavoidable intubation is associated with worse outcomes

NIV in ARF in the postoperative setting

Acute respiratory failure after OP

- Surgery, particularly that approaching the diaphragm, anaesthesia and post-operative pain → deleterious effects on the respiratory system
- These modifications of respiratory function occur early after surgery and diaphragm dysfunction may last up to 7 days
- use of NIV may increase lung aeration and decrease the amount of atelectasis during the post-operative period of patients undergoing major abdominal surgery
- CPAP and bilevel NIV are effective at improving lung aeration and arterial oxygenation and decreasing the amount of atelectasis without adverse haemodynamic effects during the post-operative period after extubation

Supra-diaphragmatic surgery

• One RCT in patients with ARF after lung cancer resection → NIV decreased the need for re-intubation and reduced hospital mortality.

~ Auriant I, AJRCCM 2001; 164: 1231–1235

• 830 patients following cardiothoracic surgery with or at risk for ARF → the use of high-flow nasal cannula therapy compared with intermittent NIV did not result in a worse rate of re-intubation.

~Stephan F, JAMA 2015; 313: 2331–2339

Abdominal and/or pelvic surgery

• **ARF after abdominal surgery:** NIV resulted in avoidance of intubation in 67% cases, and a reduction in the hospital LOS and mortality, compared with intubated patients

~ Jaber S, Chest 2005; 128: 2688–2695

• RCT on 40 patients undergoing solid organ transplantation (mainly liver transplantation) : NIV improved oxygenation and decreased the need for tracheal intubation compared with conventional therapy

~ Antonelli M, JAMA 2000; 283: 235–241

Effect of NIV on Tracheal Reintubation Among Patients With Hypoxemic ARF Following Abdominal Surgery: A Randomized Clinical Trial

Probability of Survival

Jaber S, JAMA. 2016;315(13):1345-1353

NIV in the treatment of ARF in postoperative patients

Mortality

1.1.2 Treatment of ARF in postop patients

Auriant 2001	3	24	9	24	38.3%			
Squadrone 2005	0	105	3	104	14.9%			
Subtotal (95% CI)		129		128	53.2%			
Total events	3		12					
Heterogeneity: $Chi^2 = 0.29$, $df = 1$ (P = 0.59); $I^2 = 0\%$								
Test for overall effect: 7	7 = 2.28	(P = 0.0))2)					

Intubation

1.2.2 Treatment of ARF in postop patients Auriant 2001 24 12 42.9% 0.42 [0.17, 1.00] 5 24 0.10 [0.01, 0.76] Squadrone 2005 105 1 10 10435.9% Subtotal (95% CI) 128 0.27 [0.12, 0.61] 129 78.9% Total events 6 22 Heterogeneity: $Chi^2 = 1.85$, df = 1 (P = 0.17); $I^2 = 46\%$ Test for overall effect: Z = 3.13 (P = 0.002)

Recommendation

We suggest NIV for patients with post-operative ARF.

(Conditional recommendation, moderate certainty of evidence.)

- Improve outcomes in patients with abdominal and thoracic surgery, but also after cardiac surgery.
- NIV reduces intubation rates, nosocomial infections, lengths of stay, morbidity and mortality.
- surgical complications such as anastomotic leak or intra-abdominal sepsis should be addressed first.
- cooperative and able to protect the airway

NIV be used in acute respiratory failure due trauma?

Mortality

	NIV	,	Contr	rol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.1.1 NIV vs SMC							
Ferrer 2003	0	6	3	11	23.0%	0.24 [0.01, 4.08]	
Hernandez 2010	1	25	1	25	8.9%	1.00 [0.07, 15.12]	
Subtotal (95% CI)		31		36	31.9%	0.46 [0.07, 2.94]	
Total events	1		4				
Heterogeneity: Chi ² =	0.51, df	= 1 (P	= 0.48);	$ ^2 = 0\%$	5		
Test for overall effect:	Z = 0.83	B (P = 0)).41)				
1.1.2 NIV vs IMV							
Bolliger 1990	2	33	0	36	4.3%	5.44 [0.27, 109.34]	
Gunduz 2005	2	22	7	21	63. 8 %	0.27 [0.06, 1.17]	
Subtotal (95% CI)		55		57	68.1%	0.60 [0.20, 1.76]	
Total events	4		7				
Heterogeneity: Chi ² =	3.20, df	= 1 (P)	= 0.07);	$l^2 = 69$	%		
Test for overall effect:	Z = 0.94	4 (P = 0).35)				
Total (95% CI)		86		93	100.0%	0.55 [0.22, 1.41]	•
Total events	5		11				-
Heterogeneity: Chi ² =	3.64, df	= 3 (P	= 0.30);	$ ^2 = 18$	%		
Test for overall effect:	Z = 1.24	4 (P = 0).21)				0.01 0.1 1 10 100
Test for subgroup diff	ferences:	Chi ² =	0.06, df	= 1 (P	= 0.81),	$^{2} = 0\%$	Favours [NIV] Favours [Control]

Intubation

	NIV	/	Cont	rol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
Ferrer 2003	1	6	5	11	25.1%	0.24 [0.02, 2.79]	
Hernandez 2010	3	25	10	25	74.9%	0.20 [0.05, 0.87]	
Total (95% CI)		31		36	100.0%	0.21 [0.06, 0.74]	-
Total events	4		15				
Heterogeneity: Chi ² =	0.01, df	= 1 (P)	= 0.91);	$I^2 = 0\%$	5		
Test for overall effect: $Z = 2.43$ (P = 0.02)							Favours [NIV] Favours [control]

ICU Length of Stay

	I	NIV		Co	ontro	1		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
1.3.1 NIV vs SMC									
Hernandez 2010 Subtotal (95% CI)	6	2	25 25	8	3	25 25	47.5% 47.5%	-2.00 [-3.41, -0.59] -2.00 [-3.41, -0.59]	7
Heterogeneity: Not ap	plicable								
Test for overall effect:	Z = 2.7	77 (P	= 0.00)6)					
1.3.2 NIV vs IMV									
Bolliger 1990	5.3	2.9	33	9.5	4.4	36	31.2%	-4.20 [-5.94, -2.46]	•
Gunduz 2005 Subtotal (95% CI)	15	4	22 55	16	3	21 57	21.4% 52.5%	-1.00 [-3.11, 1.11] -2.90 [-4.24, -1.55]	1
Heterogeneity: Chi ² =	5.26, d	f = 1	(P = 0)	.02); I ²	= 81	.%			
Test for overall effect:	Z = 4.2	23 (P	< 0.00	001)					
Total (95% CI)			80			82	100.0%	-2.47 [-3.45, -1.50]	
Heterogeneity: Chi ² =	6.07, d	f = 2	P = 0	.05); I ²	= 67	7%			
Test for overall effect:	Z = 4.9	97 (P	< 0.00	001)					Eavours [NIV] Eavours [control]
Test for subgroup diff	erences	:: Chi	$i^2 = 0.8$	31. df =	1 (P	= 0.37), $ ^2 = 0\%$		rations [init] rations [control]

Nosocomial Pneumonia

	NIV	/	Contr	ol		Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl	
1.4.1 NIV vs SMC								
Hernandez 2010	2	25	3	25	11.7%	0.64 [0.10, 4.19]		
Subtotal (95% CI)		25		25	11./%	0.64 [0.10, 4.19]		
Total events	2		3					
Heterogeneity: Not ap	plicable							
Test for overall effect:	Z = 0.47	7 (P = C).64)					
1.4.2 NIV vs IMV								
Bolliger 1990	5	33	16	36	54.9%	0.22 [0.07, 0.71]		
Gunduz 2005	4	21	10	22	33.4%	0.28 [0.07, 1.12]	_	
Subtotal (95% CI)		54		58	88.3%	0.25 [0.10, 0.59]	◆	
Total events	9		26					
Heterogeneity: Chi ² =	0.07, df	= 1 (P	= 0.80);	$ ^2 = 0\%$				
Test for overall effect:	Z = 3.12	1 (P = C	0.002)					
Total (95% CI)		79		83	100.0%	0.29 [0.13, 0.64]	•	
Total events	11		29				-	
Heterogeneity: Chi ² =	0.87. df	= 2 (P	= 0.65):	$ ^2 = 0\%$				_
Test for overall effect:	Z = 3.04	4 (P = 0)	.002)				0.01 0.1 1 10 10)0
Test for subgroup differences: $Chi^2 = 0.81$, $df = 1$ (P = 0.37), $l^2 = 0\%$							Favours [NIV] Favours [contro	נוכ

Recommendation

We suggest NIV for chest trauma patients with ARF.

(Conditional recommendation, moderate certainty of evidence.)

2019台灣胸腔暨重症加護醫學會夏季會

2019 Summer Workshop of Taiwan Society of Pulmonary and Critical Care Medicine

NIV use immediate after cardiac surgery

~ Braz J Cardiovasc Surg 2017;32(4):301-110RIGINAL

Factors associated with post cardiac surgery pulmonary dysfunction

Postoperative Respiratory depression associated with nonreversal of anesthesia³⁶ Phrenic nerve dysfunction⁵⁴ Diaphragmatic dysfunction 55.56 Pain57-60 Constant tidal volumes/short shallow respiration48 Reduced compliance⁶¹ Reduced vital capacity and functional residual capacity⁶² Ventilation-perfusion mismatch and physiological shunt^{36,63,64} Fluid imbalance27,31,39,65 Immobility,66,67 position68 Chest tubes⁶⁹ Nasogastric tubes⁷⁰ Impaired mucocilliary clearance,⁷¹ ineffective cough^{14,72} Pleural effusion47.73.74 Atelectasis72,75-77 Pulmonary edema4,7,78,79 Aspiration⁸⁰

1969 - 2019

Pneumonia	NIV		Contr	ol		Risk Ratio	Risk Ra	tio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random	, 95% Cl
Al Jaaly et al.(15), 2013	0	63	2	63	33.5%	0.20 [0.01, 4.08]	-	
Zarbock et al.[10], 2009	1	232	5	236	66.5%	0.20 [0.02, 1.73]		
Total (95% CI)		295		299	100.0%	0.20 [0.04, 1.16]	-	
Total events	1		7				17 20	
Heterogeneity: Tau ² = 0.0	0; Chi ² = (0.00, df	= 1 (P =	0.99); P	*= 0%		adar at	10 200
Test for overall effect: Z =	1.79 (P =	0.07)	5 <u>6</u> 5 9				Favours NIV Fa	avours control

Hereeta 515	NIV		Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	1 M-H, Random, 95% CI
Al Jaaly et al.[15], 2013	2	63	15	63	16.0%	0.13 [0.03, 0.56]	
Franco et al.[16], 2011	7	13	8	13	29.2%	0.88 [0.45, 1.70]	1
Jousela et al.[11], 1994	8	15	7	15	28.1%	1.14 [0.56, 2.35]	n — — —
Matte et al.[3], 2000	10	66	9	30	26.7%	0.51 [0.23, 1.11]	1
Total (95% CI)		157		121	100.0%	0.60 [0.28, 1.28]	ı 🔶
Total events	27		39				
Heterogeneity: Tau ² = 0.3	9; Chi#= 9	9.70, df	= 3 (P =	0.02); P	² = 69%		bar at de u
Test for overall effect; Z =	1.31 (P=	0.19)	7 N				0.01 0.1 1 10 11

	NIV		Contr	ol		Risk Ratio		Risk I	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	1	M-H, Rando	m, 95% Cl	
Al Jaaly et al.[15], 2013	1	63	2	63	25.1%	0.50 [0.05, 5.38]				
Zarbock et al.(10), 2009	3	232	6	236	74.9%	0.51 [0.13, 2.01]		-		
Total (95% CI)		295		299	100.0%	0.51 [0.15, 1.66]		-	-	
Total events	4		8							
Heterogeneity: Tau ² = 0.0	0; Chi ² = (0.00, df	= 1 (P =	0.99); P	² =0%		tai	t 		100
Test for overall effect: Z =	1.12 (P =	0.26)	3	0.0			0.01 1	J.1 1 Eminium MA/	10 Ferroret	100

ICU stay

	NIV Control					l		Mean Difference	Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl	
Matte et al.[3], 2000	2.09	0.5	33	2.21	1.2	30	3.7%	-0.12 [-0.58, 0.34]		
Pinilla et al.(17), 1990	2.8	1.1	32	2.7	1.3	26	2.0%	0.10 [-0.53, 0.73]		
Zarbock et al.(10), 2009	1.12	0.7	232	1.16	0.1	236	94.4%	-0.04 [-0.13, 0.05]		
Total (95% CI)			297			292	100.0%	-0.04 [-0.13, 0.05]	•	
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	0; Chi² = 0.89 (P	0.31 = 0.3	, df = 2 7)	(P = 0.8	36); P	= 0%		(<u>)</u>	-1 -0.5 0 0.5 1 Favours NIV Favours control	

Similar mortality with immediate postoperative NIV use

Study		(95% CI)	% Weigł
Al-Mutairi		3.55 (0.19, 66.89)	3.
📥 Jaaly –		1.00 (0.06, 15.64)	4.
Auriant		0.33 (0.10, 1.08)	18.
Barbagallo		3.00 (0.13, 70.30	3.
B?hner		— 9.54 (0.52, 174.94)	3.
Fagevik Olse? n		0.26 (0.03, 2.25)	6.
Garutti		3.11 (0.13, 74.72)	3.
Lorut		0.44 (0.14, 1. 4 0	18.
🟓 Pasquina		3.00 (0.12, 72.49)	3.
📥 Zhu		0.49 (0.25, 0.98)	35.
Overall		0.64 (0.36, 1.14); P=0.12 (I-square: 14.5%; P=0.310	7 100.))
ι.	.3 1 5 15 Risk ratio		

~ Medicine (2016) 95:38

Fewer re-intubation with immediate postoperative NIV

Patients requiring endotracheal	intubation	Risk ratio		
Study			(95% QI	% Weigh
Auriant			0.42 (0.17, 1.00)	28.7
B?hner		_	0.21 (0.03, 1.78)	10. 1
Fagevik Olse?n			0.30 (0.07, 1.36)	16.€
Lorut		_	3.46 (0.73, 16.44)	15.8
📕 Zhu			0.42 (0.18, 1.00)	28.9
Overal			0.52 (0.24, 1.11); P=0 (I-square: 45.8%; P=0.	.090 100.(117)
Excluding Lorut's study	\diamond		0.38 (0.22, 0.66); P=0. (I-square: 0.0%; P=0.93	.001 23)
	r			
•	.3 1	5	15	

~ Medicine (2016) 95:38

2019台灣胸腔暨重症加護醫學會夏季會

2019 Summer Workshop of Taiwan Society of Pulmonary and Critical Care Medicine

NIV to treat acute postoperative respiratory failure after cardiac surgery

Does BiPAP improve outcome of acute respiratory failure after openheart surgery?

- 44 patients, group I: IV, group: BiPAP
- HR: higher in Group I at 30 and 60 min and at 12 and 24 h
- MAP, SpO₂: higher in Group I also
- RR, PaCO₂showed significant higher in Group II
- MV duration: Group I > Group II
- Complications were statistically insignificant between Group I and Group II.

Variable	Univariate Analysi	s
	Adjusted OR (95% CI)*	Р
Sex		
Males	1.45 (0.44-4.76)	.54
Females	Reference group	
Age, y	1.09 (1.01-1.17)	.03
BMI	0.90 (0.80-1.02)	.09
EuroSCORE II	1.20 (1.03-1.39)	.02
Estimated glomerular filtration rate	1.02 (0.99-1.04)	.36
Smoking status		
Current smoker	0.49 (0.11-2.29)	.37
Ex-smoker or never smoker	Reference group	
Hypertension	1.52 (0.32-7.15)	.60
Chronic atrial fibrillation	3.95 (1.27-12.28)	.02
Diabetes mellitus	1.35 (0.48-3.81)	.58
Dyslipidemia	0.56 (0.19-1.60)	.28
Stroke	1.91 (0.37–9.71)	.44
COPD	4.38 (1.49-12.83)	.004
Peripheral vascular disease	0.70 (0.15-3.28)	.65
Heart failure (NYHA ≥ 2)	3.54 (1.01-13.02)	.04
Left ventricle ejection fraction	0.96 (0.92-1.01)	.11
Cardiopulmonary bypass time	1.00 (0.99-1.01)	.70
Type of operation		
Coronary artery bypass grafting	1.73 (0.60-4.97)	.31
Other	Reference group	
Complexity of operation		
Combined	1.82 (0.22-14.90)	.57
Noncombined	Reference group	
Postoperative complications		
Low cardiac output syndrome	2.16 (0.42-11.20)	.25
Postoperative stroke	3.69 (1.77-13.01)	.002
Renal replacement therapy	8.80 (1.03-23.06)	<.001

~ RESPIRATORY CARE Paper in Press. Published on April 2, 2019

2019台灣胸腔暨重症加護醫學會夏季會

2019 Summer Workshop of Taiwan Society of Pulmonary and Critical Care Medicine

Palliative care

Noninvasive Ventilation in Patients With Do-Not-Intubate and Comfort-Measures-Only Orders: A Systematic Review and Meta-Analysis*

- 2,020 patients with acute respiratory failure & DNI orders
- Hospital discharge survival rate: 56% (95% CI, 49-64%)
 1 year Survival rate: 32% (95% CI, 21-45%)
- Hospital survival :
 - **COPD** :68%

```
Pulmonary edema: 68%,
```

```
Pneumonia:41%
```

```
Malignancy.:37%
```

- Survival was comparable in hospital ward versus an ICU.
- Quality of life of survivors was not reduced compared with baseline

Wilson ME et al. <u>Crit Care Med.</u> 2018 Aug;46(8):1209-1216

Recommendation

- •We suggest offering NIV to dyspneic patients for palliation in the setting of terminal cancer or other terminal conditions.
- (Conditional recommendation, moderate certainty of evidence.)

• Should NIV be used to facilitate weaning patients from invasive mechanical ventilation?

Noninvasive Ventilation during Persistent Weaning Failure A Randomized Controlled Trial

Miquel Ferrer, Antonio Esquinas, Francisco Arancibia, Torsten Thomas Bauer, Gumersindo Gonzalez, Andres Carrillo, Robert Rodriguez-Roisin, and Antoni Torres

Total duration of ventilation (days)

In conclusion, NIV is effective to shorten the period of invasive ventilation in patients with persistent weaning failure, and, in consequence, to decrease the incidence of nosocomially acquired infections, mortality, and other outcome parameters such as length of ICU and hospital stays. Am J Respir Crit Care Med Vol 168. pp 70-76, 2003

)19

TABLE 1. BASELINE CHARACTERISTICS OF PATIENTS AT ENTRY INTO THE STUDY

	NIV Group $(n = 21)$	Conventional-Weaning Group $(n = 22)$	p Value
	70 3 + 7 5	71 0 + 7 2	0 767
Sex M/F	13/8	17/5	0.444
Current or former smoker, n (%)	13 (62)	17 (77)	0.444
Current or former alcohol abuse. n (%)	4 (19)	2 (9)	0.412
APACHE-II on admission	17.8 ± 4.6	18.5 ± 3.9	0.589
Duration of ICU stay, d	7.3 ± 2.8	7.5 ± 3.9	0.801
Duration of mechanical ventilation, d	7.1 ± 2.8	7.0 ± 3.4	0.959
Number of comorbidities per patient	1.8 ± 0.9	1.8 ± 0.9	0.894
White blood cells, $\times 10^{9}/L$	12.1 ± 4.3	12.4 ± 3.0	0.794
Hematocrit, L/L	0.38 ± 0.07	0.35 ± 0.05	0.170
Patients with chronic pulmonary disorders, n (%)	16 (76)	17 (77)	1.000
Causes of mechanical ventilation, n			0.545
Exacerbation of chronic pulmonary disorders	10	9	
Congestive heart failure	4	5	
Community-acquired pneumonia	2	4	
Hospital-acquired pneumonia	1	1	
Postoperative respiratory failure	-	2	
Acute lung injury	1	1	
Thoracic trauma	1	_	
Hemoptisis	1	_	
Cardiac arrest	1	_	

Definition of abbreviations: APACHE-II = acute physiology and chronic health evaluation-II score; ICU = intensive care unit; NIV = noninvasive ventilation.

Values are means \pm SD.

Am J Respir Crit Care Med Vol 168. pp 70–76, 2003

TABLE 3. WEANING RESULTS, LENGTH OF STAY, OUTCOME VARIABLES, AND CAUSES OF DEATH FOR THE NONINVASIVE VENTILATION AND THE CONVENTIONAL-WEANING GROUPS

	NIV Group $(n = 21)$	Conventional-Weaning Group ($n = 22$)	p Value
Duration of invasive ventilation, d	9.5 ± 8.3	20.1 ± 13.1	0.003
Total period of ventilatory support*, d	11.4 ± 8.0	20.1 ± 13.1	0.012
ICU stay, d	14.1 ± 9.2	25.0 ± 12.5	0.002
Hospital stay, d	27.8 ± 14.6	40.8 ± 21.4	0.026
Reintubation, n (%)	3 (14)	6 (27)	0.457
Main causes of reintubation, n			
Severe persistent hypoxemia	1	3	
Severe dyspnea	_	2	
Inability to manage secretions	2	_	
Hemodynamic instability	_	1	
Tracheotomy, n (%)	1 (5)	13 (59)	< 0.001
ICU survival, n (%)	19 (90)	13 (59)	0.045
Causes of death within 90 d after entry			
in the study			
Septic shock/MOF	1	9	
Refractory hypoxemia	1	2	
Cardiac arrest	2	1	
Pneumothorax	_	1	
Stroke	1	_	
Pulmonary embolism	1	_	

Definition of abbreviations: ICU = intensive care unit; MOF = multiple organ failure; NIV = noninvasive ventilation.

Values are means \pm SD.

*Computation of the total period of ventilatory support in the NIV group was done by the addition of the number of days when both noninvasive and invasive mechanical ventilation were received. In reintubated patients from both groups, the days without ventilatory support between extubation and reintubation were not computed as ventilation days.

TABLE 4. SERIOUS COMPLICATIONS DIAGNOSED IN THE INTENSIVE CARE UNIT AFTER ENTRY INTO THE STUDY

	NIV Group $(n = 21)$	Conventional-Weaning Group ($n = 22$)	p Value
Total number of patients	5	16	0.004
Nosocomial pneumonia	5	13	0.042
Catheter-related sepsis	_	2	_
Sacrum-infected ulcer	_	1	_
Urinary tract infection	_	1	_
Chest wall abscess	_	1	_
Gastrointestinal bleeding	1	_	_
Pneumothorax	_	1	_
Septic shock	2	9	0.045

Definition of abbreviation: NIV = noninvasive ventilation.

Am J Respir Crit Care Med Vol 168. pp 70–76, 2003

TABLE 5. UNIVARIATE AND MULTIVARIATE ANALYSES OF INTENSIVE CARE UNIT AND 90-DAY SURVIVAL

	Adjusted Odds Ratio	95% Cl	p Value	Adjusted Odds Ratio	95% CI	p Value
Decreased ICU survival	Univariate analysis			Multivariate analysis		
Conventional-weaning approach	6.6	1.2-35.6	0.029	6.6	1.1-38.8	0.035
Age > 70 yr	5.8	1.1-31.3	0.041	_	_	NS
Decreased 90-d survival	Univariate analysis			Multivariate analysis		
Conventional-weaning approach	_	_	0.044	3.5	1.2-9.6	0.018
Age > 70 yr	_	_	0.012	5.1	1.7-15.0	0.003
Pa_{CO_2} during spontaneous breathing > 45 mm Hg	_	-	0.018	5.8	1.8–18.7	0.003

Definition of abbreviations: CI = confidence interval; ICU = intensive care unit; NS = not significant.

Noninvasive Ventilation as a Systematic Extubation and Weaning Technique in Acute-on-Chronic Respiratory Failure

A Prospective, Randomized Controlled Study

Girault C et al, Am J Respir Crit Care Med 1999; 160(1):86-92.

1969 - 2019

Figure 1. Cumulative probability of remaining on ETMV in the IPSV and NIV weaning groups. IPSV = invasive pressure support

In conclusion, NIV permits earlier removal of the endotracheal tube than with conventional IPSV, and reduces the duration of daily ventilatory support without increasing the risk of weaning failures.

Noninvasive Ventilation and Weaning in Patients with Chronic Hypercapnic Respiratory Failure

A Randomized Multicenter Trial

Girault C, Am J Respir Crit Care Med 2011;184(6):672-679.

Figure 2. Probability of weaning failure within the first 7 days after extubation for the overall population according to study group. ARF = acute respiratory failure; NIV = noninvasive ventilation.

Conclusions: No difference was found in the reintubation rate between the three weaning strategies. NIV decreases the intubation duration and may improve the weaning results in difficult-to-wean patients with CHRF by reducing the risk of postextubation ARF. The benefit of rescue NIV in these patients deserves confirmation. Clinical trial registered with www.clinicaltrials.gov (NCT 00213499).

Girault C, Am J Respir Crit Care Med 2011;184(6):672-679.

9

Recommendations

- We suggest NIV be used to facilitate weaning from mechanical ventilation in patients with hypercapnic respiratory failure.
 - (Conditional recommendation, moderate certainty
 - of evidence.)
- We do not make any recommendation for hypoxaemic patients.

•Should NIV be used in ARF following extubation from invasive mechanical ventilation?

Table 9. Criteria Used to Separate Subjects Into High Risk and Low Risk for Re-Intubation				
Mech at Least	nanical Ventilation for ELeast 12 h and at One of the Following	Low I	Risk	High Risk
Age 65 y		\leq		>
APACHE	II score of	\leq		>
12 at e	xtubation			
BMI 30 k	g/m ₂	\leq		>
Pulmonar	y Secretions	No pro	blem	Problem
Comorbid	lities	≤1		>1
HF cause	for mechanical ventilation	on No		Yes
Moderate	-severe COPD	No		Yes
Airway pa	atency	No pro	blem	Problem
Duration	of mechanical venitlation	≤7 d		>7 d
Based on Re APACHE = BMI = body HF = heart f	ferences 87 and 88. Acute Physiology and Chronic H mass index failure	ealth Evaluation	2010.64	(6).659 679
in neart i	unuro	kespir Care	2019;64((0):658-678.

1969 - 2019

Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Postextubation High-Flow Nasal Cannula vs Conventional Oxygen Therapy on Reintubation in Low-Risk Patients A Randomized Clinical Trial JAMA. 2016 Apr 5;315(13):1354-61

Gonzalo Hernández, MD, PhD; Concepción Vaquero, MD; Paloma González, MD; Carles Subira, MD; Fernando Frutos-Vivar, MD; Gemma Rialp, MD; Cesar Laborda, MD; Laura Colinas, MD; Rafael Cuena, MD; Rafael Fernández, MD, PhD

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT Effect of Postextubation High-Flow Nasal Cannula vs Noninvasive Ventilation on Reintubation and Postextubation Respiratory Failure in High-Risk Patients A Randomized Clinical Trial JAMA. 2016 Oct 18;316(15):1565-1574

Gonzalo Hernández, MD, PhD; Concepción Vaquero, MD; Laura Colinas, MD; Rafael Cuena, MD; Paloma González, MD; Alfonso Canabal, MD, PhD; Susana Sanchez, MD; Maria Luisa Rodriguez, MD; Ana Villasclaras, MD; Rafael Fernández, MD, PhD

Low risk

CONCLUSIONS AND RELEVANCE Among extubated patients at low risk for reintubation, the use of high-flow nasal cannula oxygen compared with conventional oxygen therapy reduced the risk of reintubation within 72 hours.

High risk

CONCLUSIONS AND RELEVANCE Among high-risk adults who have undergone extubation, high-flow conditioned oxygen therapy was not inferior to NIV for preventing reintubation and postextubation respiratory failure. High-flow conditioned oxygen therapy may offer advantages for these patients.

High-flow nasal cannula oxygen therapy decreases postextubation neuroventilatory drive and work of breathing in patients with chronic obstructive pulmonary disease

Table 3 Neuroventilatory drive and work of breathing parameters

1			
	HFNC1	Conventional O_2	HFNC2
EAdi _{PEAK} (μV)	15.4 ± 6.4	$23.6 \pm 10.5^{a,b}$	15.2 ± 6.4
EAdi _{PTP} (μV/s)	13.7 ± 6.5	$21.1 \pm 11.8^{a,b}$	12.1 ± 5.2
EAdi _{SLOPE}	18.6 ± 6.5	$24 \pm 14.7^{a,b}$	17.6 ± 10.2
PTP _{DI/b} (cmH ₂ O/s)	6.7 ± 2.7	9.9 ± 3.1 ^{a,b}	6.7 ± 2.8
PTP _{DI/min} (cmH ₂ O/s/min)	135 ± 60	211 ± 70 ^{a,b}	132 ± 56

Data are expressed as mean ± standard deviation *Conventional O*₂ conventional low flow oxygen therapy through a nonocclusive face mask, *EAdi*_{PEAK} diaphragm electrical activity peak, *EAdi*_{PTP} EAdi deflection inspiratory area, *EAdi*_{SLOPE} EAdi slope from the beginning of inspiration to EAdi_{PEAK}, *HFNC* high-flow nasal cannula oxygen therapy, *PTP*_{DI/b} inspiratory trans-diaphragmatic pressure-time product per breath, *PTP*_{DI/min} inspiratory trans-diaphragmatic pressure-time product per minute ^a Different from HFNC1, ANOVA, with Bonferroni correction ^b Different from HFNC2, ANOVA, with Bonferroni correction

Di mussi et al. Critical Care (2018) 22:180

Fig. 4 Trend of the neuroventilatory drive, as expressed by the diaphragm electrical activity peak EAdi_{PEAK}, and of work of breathing, as expressed by the inspiratory P_{DI} pressure-time product per breath (PTP_{DI/b)} and per minute (PTP_{DI/min}). *Significant

Di mussi et al. Critical Care (2018) 22:180

Postextubation Recommendations

1969 - 2019

Risk for re-intubation	Recommendation
Low	No indication
High	
Need ventilatory assistance	NIV
*Hypoxemic need high PEEP	CPAP
Hypoxemic doesn't need high F	PEEP HFNC

*: (obese, abdominal surgery, significant atelectasis)

Respir Care 2019;64(6):658–678.

Recommendations

- We suggest that NIV be used to prevent post-extubation respiratory failure in highrisk patients post-extubation. (Conditional recommendation, low certainty of evidence.)
- We suggest that NIV should not be used to prevent post-extubation respiratory failure in non-high-risk patients. (Conditional recommendation, very low certainty of evidence.)

Recommendation

- We suggest that NIV should not be used in the treatment of patients with established postextubation respiratory failure.
- (Conditional recommendation, low certainty of evidence.)

2019台灣胸腔暨重症加護醫學會夏季會

2019 Summer Workshop of Taiwan Society of Pulmonary and Critical Care Medicine

Should NIV be used in de novo ARF?

De novo respiratory failure

- Respiratory failure occurring without prior chronic respiratory disease.
- Most patients are hypoxeamic respiratory failure
 -hypoxaemia (PaO2/FIO2 ≤ 200)
 -tachypnea (RR >30 35 /min)
- Nearly three quarters of the cases are pneumonia
- 10-15% of patients with de novo acute respiratory failure or ARDS used NIV

ORIGINAL ARTICLE

1969 - 2019

High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure

Intubation rate

D90 Survival

Predictors of Intubation in Patients With Acute Hypoxemic Respiratory Failure Treated With a Noninvasive Oxygenation Strategy*

Jean-Pierre Frat, MD^{1,2,3}; Stéphanie Ragot, PhD^{4,5,6}; Rémi Coudroy, MD^{1,2,3}; Jean-Michel Constantin, PhD⁷

TABLE 3. Multivariate Logistic Regression Analyses of Factors Associated With Intubation

Risk Factors	OR (95% CI)	p
In patients treated with conventional O2 therapy by nonrebreathing mask ^a		
Respiratory rate ≥ 30 breaths/min at H1	2.76 (1.13-6.75)	0.03
In patients treated with high-flow nasal cannula oxygen therapy ^a		
Heart rate at H1 (per beat/min)	1.03 (1.01–1.06)	< 0.01
In patients treated with noninvasive ventilation ^{ab}		
Tidal volume > 9 mL/kg of predicted body weight at H1	3.14 (1.22-8.06)	0.02
$Pao_2/Fio_2 \le 200 \text{ mm Hg at H1}$	4.26 (1.62-11.16)	0.003

✓ Predictors of intubation : TV>9 ml/Kg ; PF ratio < 200
 ✓ Poor outcomes were not because of delayed intubation

ORIGINAL ARTICLE

Noninvasive Ventilation of Patients with Acute Respiratory Distress Syndrome

Insights from the LUNG SAFE Study

Giacomo Bellani^{1,2}, John G. Laffey^{3,4,5,6,7,8}, Tài Pham^{9,10,11}, Fabiana Madotto¹², Eddy Fan^{8,13,14,15},

- NIV was used in 15% of ARDS patients
- NIV failure rate : 22.2% of mild, 42.3% of moderate, and 47.1% of severe ARDS

Am J Respir Crit Care Med 2017; 195

Higher ICU mortality in patients with a PaO2/FIO2 lower than 150 mm Hg received NIV than invasive-MV

Am J Respir Crit Care Med 2017; 195

1969 - 2019

Conclusion

- NIV application is increasing in recent years
- The evidence is still not adequate to prove the effect of NIV on de novo respiratory failure
- Select suitable patients, suitable device
- Closely monitor, early detection of treatment failure

Recommendation

•Given the uncertainty of evidence we are unable to offer a recommendation on the use of NIV for de novo ARF.

Take home message

- NIV should be managed by an experienced team
- Carefully selecte and avoid contraindications such as abnormal mental status, shock , upper airway obstruction, or too much secretions
- Closely monitored
- Reassessed early after starting NIV
- Intubated promptly if not improving

Thanks for your attention !