Management of ARDS

台中榮總 呼吸治療科 詹明澄

Definition of ALI/ARDS

- Acute onset
- Bilateral infiltrates on CXR
- PCWP \leq 18cmH₂O; or no left side heart heart failure

• Hypoxemia

- − If $PaO_2/FiO_2 \le 200$ Acute respiratory distress syndrome (ARDS)
- If $PaO_2/FiO_2 \le 300$ Acute lung injury (ALI)

Berlin Definition

Table 3. The Berlin Definition of Acute Respiratory Distress Syndrome

	Acute Respiratory Distress Syndrome							
Timing	Within 1 week of a known clinical insult or new or worsening respiratory symptoms							
Chest imaging ^a	Bilateral opacities—not fully explained by effusions, lobar/lung collapse, or nodules							
Origin of edema	Respiratory failure not fully explained by cardiac failure or fluid overload Need objective assessment (eg, echocardiography) to exclude hydrostatic edema if no risk factor present							
Oxygenation ^b								
Mild	200 mm Hg PaO_2/FIO_2 300 mm Hg with PEEP or CPAP 5 cm H ₂ O							
Moderate	100 mm Hg PaO ₂ /FiO ₂ 200 mm Hg with PEEP 5 cm H ₂ O							
Severe	PaO_2/FIO_2 100 mm Hg with PEEP 5 cm H ₂ O							

JAMA. 2012;307(23):5669

Barotrauma

Not just air leak

Fig. 3. Comparison of left lungs from rats ventilated with IPPB 14/0, PEEP 45/10, and HIPPB 45/0 (left to right). The perivascular groove is distended with edema in the lungs from rats ventilated with inspiratory pressure of 45 cm $\rm H_2O$. The dark congested appearance of the lung ventilated with 45/0 is apparent.

Figure 1 Macroscopic aspect of rat lungs after mechanical ventilation at 45 cm H₂O peak airway pressure. *Left*: normal lungs; *middle*: after 5 min of high airway pressure mechanical ventilation. Note the focal zones of atelectasis (in particular at the left lung apex); *right*: after 20 min, the lungs were markedly enlarged and congestive; edema fluid fills the tracheal cannula. Used with permission. From Dreyfuss et al. [15].

Am RevRespir Dis 1974;110:556–565.

Am J Respir Crit Care Med 1998,157:1-30.

VILI in Light Microscope

AJRCCM 1998

Perivascular cuffing PC 45cmH₂O, 5ming

Alveolar edema PC 45cm H_2O , 20min

Atelectrauma

- Opening collapsed airway requires relatively high forces and thus causes epithelium disruption.
- Ventilation at low lung volumes can inhibit production of surfactant and/or lead to surfactant being squeezed out of alveoli.
- Reexpansion of atelectatic regions can be associated with marked increase in regional stress.

Figure 9. Alterations caused by ventilator-induced lung injury (VIL). Biologic, physiologic, and systemic effects caused by injurious ventilatory strategies. Further injury can be caused by mediators released into the lung. These mediators can recruit neutrophils into the lung or cause changes that can promote

Therapeutic options for ARDS

> Intensive Care Med (2012) 38:1573–1582

The ARDS Lung

Gattinoni JAMA 1993, Pelosi AJRCCM 1994, Gattinoni AJRCCM 2002, Gattinoni ICM 2005

Rouby Intensive Care Med 2000

6 vs 12 ml/kg

N Engl J Med 2000;342:1301-8

Table 4. Main Outcome Variables.*					g/ml Plas	ma IL-6		
Variable	Group Receiving Lower Tidal Volumes	Group Receiving Traditional Tidal Volumes	P VALUE	3				
Death before discharge home and breathing without assistance (%)	31.0	39.8	0.007	2				
Breathing without assistance by day 28 (%)	65.7	55.0	< 0.001	1.5				
No. of ventilator-free days, days 1 to 28	12±11	10±11	0.007	1	Day 1		Day 3	
No. of days without failure of nonpulmonary organs or systems, days 1 to 28	15 ± 11	11 12±11	0.43		The decrease wa with lower tidal The day 3 plasm were also lower	as greater in volumes (P< a interleukir in this grour	the group trea :0.001) n-6 concentration (P=0.002).	ated

Driving pressure vs mortality

N Engl J Med 2015;372:747-55.

Table 4. Main Outcome Variables.*

Outcome	Lower-PEEP Group	Higher-PEEP Group	P Value
Death before discharge home (%)†			
Unadjusted Adjusted for differences in baseline covariates	24.9 27.5	27.5 25.1	0.48 0.47
Breathing without assistance by day 28 (%)	72.8	72.3	0.89
No. of ventilator-free days from day 1 to day 28‡	14.5±10.4	13.8±10.6	0.50
No. of days not spent in intensive care unit from day 1 to day 28	12.2±10.4	12.3±10.3	0.83
Barotrauma (%)§	10	11	0.51
No. of days without failure of circulatory, coagulation, hepatic, and renal organs from day 1 to day 28	16±11	16±11	0.82

N Engl J Med 2004;351:327-36.

PEEP Guided by Esophageal Balloon

- 1. Optimal level of PEEP has been difficult to determine
- Adjusting PEEP in according to lung and chest wall mechanics is achievable
- Pao = flow x resistance + Vt/compliance

Esophageal P. to Set PEEP

В 350-50.0-Esophageal pressure 300-Esophageal pressure 40.0 250-PaO₂FIO₂ Conventional treatment tory-System (ml/cm of wa 30.0 200-150-20.0 Conventional treatment P=0.002 P=0.01 100-10.0 50-24 Hr 48 Hr 72 Hr Baseline 24 Hr 48 Hr 72 Hr Baseline С D of Dead Space to Tidal Volume Ratio 0.75-25.0 0.70-Esophageal pressure 20.0 Conventional treatment PEEP of water) 0.65 15.0 0.60 10.0 Esophageal pressure P=0.29 5 0.55 Conventional treatment 5.0 P<0.001 Ratio 0.50 Baseline 24 Hr 48 Hr 72 Hr Baseline 24 Hr 48 Hr 72 Hr spulmonary End-Expiratory ^m Pressure (cm of water) er) 3.0-35.0-Esophageal pressure Esophageal pressure 2.0wa 30.0 <u>----</u> Ś 1.0-25.0 5 0.0-Conventional treatment 20.0 -1.0-15.0 -2.0-P=0.003 10.0 -3.0-5.0 4.0-Conventional treatment P<0.001 Plat 0.0 Baseline 24 Hr 48 Hr 72 Hr Baseline 24 Hr 48 Hr 72 Hr G 12.0-Transpulmonary End-Inspira Pressure (cm of water) Esophageal pressure 10.0-8.0-6.0-Conventional treatment P=0.13 4.0-2.0-0.0 Baseline 24 Hr 48 Hr 72 Hr

Appendix 3: Kaplan-Meier survival functions for comparison between esophageal pressure-guided vs. conventional ventilation protocols.

N Engl J Med 2008;359:2095-104.

Papazian L et al. New Engl J Med 2010

More Severe

Less Severe

Gattinoni's first trial

- Multi-center, randomized trial
 - December 1996 to October 1999
 - ALI and ARDS
 - 152 prone, 152 supine
 - prone position for 6 or more hours daily for 10 days

Gattinoni L. et al N Engl J Med 2001;345:568-73

Fig. 4 Effect of prone ventilation on PaO₂ (partial pressure of supine group (at the closest available time). Weight is the

PaO₂ v.s. PaCO₂ Responders

Gattinoni et al, Crit Care Med 2003; 31:2727-2733

PPV reduces mortality in low PF ratio patients

Study or sub-category	Prone n/N	Supine n/N	Risk Ratio 95% Cl	Weight %	Risk Ratio 95% Cl
All Patients					
Gattinoni 2001	92/148	87/149	_ _	27.67	1.06 [0.88, 1.28]
Beuret 2002	4/12	4/9	_	0.81	0.75 [0.25, 2.22]
Guerin 2004	179/413	159/377		36.18	1.03 [0.87, 1.21]
Curley 2005	4/51	4/51	F	0.53	1.00 [0.26, 3.78]
Voggenreiter 2005	1/21	3/19	+	0.20	0.30 [0.03, 2.66]
Mancebo 2006	38/76	37/60	·	10.47	0.81 [0.60, 1.10]
Chan 2007	5/11	6/11		1.33	0.83 [0.36, 1.94]
Fernandez 2008	8/21	10/19		1.97	0.72 [0.36, 1.45]
Taccone 2009	79/166	91/172		20.84	0.90 [0.73, 1.11]
Subtota (95% C)	410/919	401/867	•	100.00	0.97 [0.88, 1.07]
Test for Overall Effect: $p=0.54$ Heterogeneity: $I^2 = 0\%$					
PaO ₂ /FiO ₂ > 100 Subgroup					
Gattinoni 2001	57/95	52/103		28.45	1.19 [0.92, 1.53]
Guerin 2004	126/323	110/302		44.31	1.07 [0.88, 1.31]
Curley 2005	3/30	2/28	F	0.62	1.40 [0.25, 7.77]
Mancebo 2006	16/33	16/31		7.54	0.94 [0.58, 1.53]
Chan 2007	3/4	0/4		0.25	7.00 [0.47, 103.27]
Fernandez 2008	3/12	7/14	←	1.46	0.50 [0.16, 1.52]
Taccone 2009	40/93	43/96	·	17.37	0.96 [0.70, 1.33]
Subtotal (95% CI)	248/590	230/578	•	100.00	1.07 [0.93, 1.22]
Test for Overall Effect: $p=0.35$ Heterogeneity: $I^2 = 0\%$					
PaO ₂ /FiO ₂ < 100 Subgroup					
Gattinoni 2001	35/53	35/46		28.31	0.87 [0.67, 1.12]
Guerin 2004	53/90	49/75		31.56	0.90 [0.71, 1.14]
Curley 2005	1/21	2/23	• •	0.33	0.55 [0.05, 5.61]
Mancebo 2006	22/43	21/29		13.25	0.71 [0.49, 1.02]
Chan 2007	2/6	6/7	← • − − − −	1.31	0.39 [0.12, 1.25]
Fernandez 2008	5/9	2/4		- 1.38	1.11 [0.36, 3.48]
Taccone 2009	39/73	48/76		23.86	0.85 [0.64, 1.11]
Subtotal (95% CI) Test for Overall Effect: p=0.01 Heterogeneity: I ² = 0%	157/295	163/260	•	100.00	0.84 [0.74, 0.96]
			0.2 0.5 1 2	5	

Intensive Care Med (2010) 36:585–599

Prone positioning in severe ARDS

- Multicenter, prospective, randomized, controlled trial
- 446 patients
 - 237 prone, 229 supine
- Severe ARDS
 - P/F ratio < 150</p>
 - $FiO_2 \ge 0.6$
 - − PEEP \geq 5 cm H₂O
- ≥ 16 hours/day

Research

CMAJ 2014. DOI:10.1503/cmaj.140081

RR (95% CI)

Effect of prone positioning during mechanical ventilation on mortality among patients with acute respiratory distress syndrome: a systematic review and meta-analysis

	No. of	Deat	hs, <i>n/N</i>		l² value.	Favours - Favours	
Variable t	trials	Prone	Supine	RR (95% CI)	%	prone supine —	\rightarrow
Protective lung ventilation	n						
Mandated	6	154/510	209/506	0.74 (Cl 0.59–0.95)	29	- T	0.05
Not mandated	4	229/458	205/395	0.98 (CI 0.86–1.12)	0	↓ ↓ ^µ	0.05
Duration of prone positio	ning						
≥ 16 h/d	6	191/565	243/547	0.77(Cl 0.64–0.92)	21	- T	0.02
< 16 h/d	4	192/403	171/354	1.02 (CI 0.88–1.17)	0	↓ ↓ ^µ	0.02
Level of hypoxemia*							
Severe	6	75/210	102/209	0.76 (Cl 0.61–0.94)	0	_ _	ר
Moderate	6	75/274	102/268	0.74 (CI 0.48–1.16)	42		<i>p</i> > 0.9
Mild	4	3/22	3/23	0.98 (CI 0.18–5.24)	0		- J
						0.1 1	i 10

Nasal High Flow for Acute Hypoxemia

N Engl J Med 2015;372:2185-96.

ExtraCorporeal Life Support (ECLS)

<u>ExtraCorporeal Membrane Oxygenation</u> (ECMO)

ExtraCorporeal CO2 Removal (ECCO2R)

Patient Outcome						
Therapy'	Dead—Respiratory Improvement Never Occurred	Dead After Respiratory Improvement	Survived After Respiratory Improvement			
ECMO and MV	34	4	4			
MV (control)	41	3	4			

Zapol W.JAMA 1979:242:2193-6

Salt Lake City study PCIRV + ECCO2R

Morris A.H. AJRCCM 1994, 149:295-305

ECMO volumes and indications

Figure 8. Cases in the Extracorporeal Life Support Organization Registry, July 2013. (From the Extracorporeal Life Support Organization Registry, reprinted with permission.)

Figure 9. Adult respiratory cases, Extracorporeal Life Support Organization Registry July 2013. (From the Extracorporeal Life Support Organization Registry, reprinted with permission.)

Bartlett RH, J Am Coll Surg, 2014

"In God we trust; All others must bring data"

> E. Edwards Deming 1900-1993

Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial

Giles J Peek, Miranda Mugford, Ravindranath Tiruvoipati, Andrew Wilson, Elizabeth Allen, Mariamma M Thalanany, Clare L Hibbert, Ann Truesdale, Felicity Clemens, Nicola Cooper, Richard K Firmin, Diana Elbourne, for the CESAR trial collaboration

- UK-based multi-center trial
- 180 patients,1:1 ratio, conventional vs ECMO
 - aged 18–65 years, severe (Murray score >3.0 or pH <7.20)
 - high pressure (>30 cm H₂O of PIP) or high FiO₂ (>0.8) ventilation for more than 7 days; intracranial bleeding; any other contraindication to limited heparinisation; or any contraindication to continuation of active treatment
- Survive to 6 months without disability
 - ECMO 63% (57/90) vs conventional 47% (41/87) (RR 0.69; 95% CI 0.05– 0.97,p=0.03)

Adherence to protective ventilation strategy

	ECMO	Conventional	
Treatment by low-volume low-pressure ventilation strategy at any time	84 (93%)	63 (70%)	<0.0001
Time under strategy (days)	23.9 (20.4)	15·0 (21·1)	<0.0001

Table 3. Patient Outcomes^a

	2009 Influer	nza A(H1N1)	
Outcome Measure	Confirmed Infection (n = 53)	Suspected Infection (n = 15)	All Infections (N = 68)
Length of stay, median (IQR), d ICU	26 (16-35)	31 (15-38)	27 (16-37)
Hospital	35 (24-45)	40 (27-54)	39 (23-47)
Duration, median (IQR), d Mechanical ventilation	24 (13-31)	28 (13-34)	25 (13-34)
ECMO support	10 (7-14)	11 (10-16)	10 (7-15)
Survival at ICU discharge	38 (72)	10 (67)	48 (71)
Still in ICU	4 (8)	2 (13)	6 (9)
Survival at hospital discharge	22 (42)	10 (67)	32 (47)
Still in hospital ^b	14 (26)	2 (13)	16 (24)
Ambulant at hospital discharge ^c	21 (95)	10 (100)	31 (97)
Sao ₂ on room air at hospital discharge, median (IQR), % ^c	97 (95-98)	97 (95-98)	97 (95-98)
Discharge destination Died	11 (21)	3 (20)	14 (21)
Home	18 (34)	4 (27)	22 (32)
Other hospital	0	1 (7)	1 (1)
Rehabilitation facility	4 (8)	5 (33)	9 (13)
Cause of death ^d Hemorrhage	3 (27)	1 (33)	4 (29)
Intracranial hemorrhage	4 (36)	2 (66)	6 (43)
Infection	1 (9)	0	1 (7)
Intractable respiratory failure	3 (27)	1 (33)	4 (29)

ECMO for 2009 Influenza H1N1 Severe ARDS Australia and New Zealand

JAMA. 2009;302(17):1888-1895

Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome

A. Combes, D. Hajage, G. Capellier, A. Demoule, S. Lavoué, C. Guervilly, D. Da Silva, L. Zafrani, P. Tirot, B. Veber,
E. Maury, B. Levy, Y. Cohen, C. Richard, P. Kalfon, L. Bouadma, H. Mehdaoui, G. Beduneau, G. Lebreton, L. Brochard,
N.D. Ferguson, E. Fan, A.S. Slutsky, D. Brodie, and A. Mercat, for the EOLIA Trial Group, REVA, and ECMONet*

1. Very sick patients

- P/F ratio < 80 mmHg
- CRS < 30 cmH₂O
- Driving pressure > 16 cmH₂O
- SOFA > 10
- 2. Strict study design
 - 100% ECMO in study group
 - Optimal care in control group
 - Low tidal volume, 90% prone, 100% NM blockade

The routine use of ECMO in patients with severe ARDS is not superior to the use of ECMO as a rescue maneuver in patients whose condition has deteriorated further.

Survival Without Treatment Failure

Crossover to ECMO or Death for the Control Group and Death for the ECMO Group

- 1. Ethical consideration
- 2. 35(28%) in the control group crossover to ECMO
- 3. Crossover patients are sicker
 - Higher P_{plat}, ΔP, Lower compliance, more CXR infiltrates
- 4. High mortality (57%), without crossover (41%)

Meta-analysis of ECMO for ARDS

	ECMO		CMV			Weight (%)	Risk ratio (95% CI)
	Events	Total	Events	Total			
Peek et al (2009) ³ Combes et al (2018) ¹⁰	33 44	90 124	45 57	90 125		44·4% 55·6%	0·73 (0·52–1·03) 0·78 (0·57–1·06)
Combined Heterogeneity: $\tau^2=0.00$; $\chi^2=0.06$, df=1, (p=0.80); $I^2=0\%$ Test for overall effect: Z=2.39 (p=0.02)	77	214	102	215		100-0%	0.76 (0.60–0.95)
					Favours ECMO Favours CMV	2	

Figure 3: Forest plot of mortality at latest follow-up in randomised controlled trials of ECMO vs CMV in adults with severe acute respiratory distress syndrome 6-month mortality or death before discharge was the latest follow-up timepoint in Peek et al's trial, whereas 60-day mortality was the latest timepoint in Combes et al's trial. Risk ratios were calculated with a random-effects model. ECMO=extracorporeal membrane oxygenation. CMV=conventional mechanical ventilation. df=degree of freedom.

Interpretation: Compared with conventional mechanical ventilation, use of venovenous ECMO in adults with severe acute respiratory distress syndrome was associated with reduced 60-day mortality. However, venovenous ECMO was also associated with a moderate risk of major bleeding.

Management Algorithm of ECMO for ARDS

The Lancet Respiratory Medicine 2019/01

PRESERVE study

prediction of successful ECMO for ARDS

Intensive Care Med (2013) 39:1704–1713

Dynamic Driving Pressure for ARDS with ECMO

Chiu et al. Ann. Intensive Care (2017) 7:12

	All patients			Subgroup: PaO ₂ /FIO ₂ <150		
	avECCO2-R	Control	р	avECCO ₂ -R	Control	р
Ventilator-free-days-28 Ventilator-free-days-60	10.0 ± 8 33.2 ± 20	9.3 ± 9 29.2 ± 21	0.779 0.469	11.3 ± 7.5 40.9 ± 12.8	5.0 ± 6.3 28.2 ± 16.4	0.033 0.033
Non-pulmonary organ failure free days-ou Lung injury score on day 10 Length of stay in hospital (days) Length of stay in ICU (days) In-hospital mortality	$21.0 \pm 14 \\ 2.2 \pm 0.6 \\ 46.7 \pm 33 \\ 31.3 \pm 23 \\ 7/40 (17.5 \%)$	$23.9 \pm 15 \\ 2.1 \pm 0.5 \\ 35.1 \pm 17 \\ 22.9 \pm 11 \\ 6/39 (15.4 \%)$	0.447 0.854 0.113 0.144 1.000	24.1 ± 7.5 2.3 ± 0.8 42.0 ± 16.6 25.9 ± 13.1 1/21 (4.8 %)	$\begin{array}{c} 29.0 \pm 17.7 \\ 2.2 \pm 0.5 \\ 40.3 \pm 15.7 \\ 31.0 \pm 12.7 \\ 1/10 \ (10 \ \%) \end{array}$	0.428 0.601 0.815 0.258 0.563

Table 4 The serum level of tumor necrosis factor (TNF), interleukin 6 (IL-6), and interleukin 8 (IL-8) in treatment and control patients (median values and 25/75 percentiles)

TNF (pg/ml)	Before begin of the study	24 h	48 h	72 h
avECCO ₂ -R $(n = 20)$ Control $(n = 15)$	19.8 (13.8–23) 20.5 (14.2–26.8)	20 (13.2–23.6)	15.3 (13.7–21.4)	22.5 (12.8–33.2)
IL-6 (pg/ml) avECCO ₂ -R ($n = 20$) Control ($n = 15$)	163 (86–419) 97 (84–214)	85 (50–193) ^{\$} 111 (52–171)	53 (20–109) ^{\$\$} 102 (58–166)	60 (35–155) ^{\$} 64 (18–90)
avECCO ₂ -R ($n = 20$) Control ($n = 15$)	72 (23–98) 34 (23–49)	65 (30–100) 36 (24–126)	71 (28–94) 45 (29–529)	81 (43–120) 25 (17–191)

p < 0.05 in comparison with before p < 0.01 in comparison with before

Lung Safe Study

Global Epidemiology of ARDS

- international, multicenter, prospective cohort study in winter 2014
 - 459 ICUs from 50 countries
- 10.4% (3022/29144) fulfilled ARDS criteria.
- Underrecognized
 - Clinician recognition of ARDS only 60%
- Undertreated
 - Less than 2/3 Vt < 8 of mL/kg.
 - P_{plat} measured in 40.1%, whereas 82.6% PEEP < 12 cm H₂O.
 - Prone positioning was used in 16.3% of severe ARDS.
- High mortality
 - Hospital mortality, mild 34.9%, moderate 40.3%, severe 46.1%.