
High-Flow Nasal Cannula Oxygen Therapy in Adults: Physiological Benefits, Indication, Clinical Benefits, and Adverse Effects

劉世豐

高雄長庚醫院胸腔科&呼吸治療科 長庚大學醫學院醫學系

20190511

Outline

- 1. Mechanism of action
- 2. Clinical application

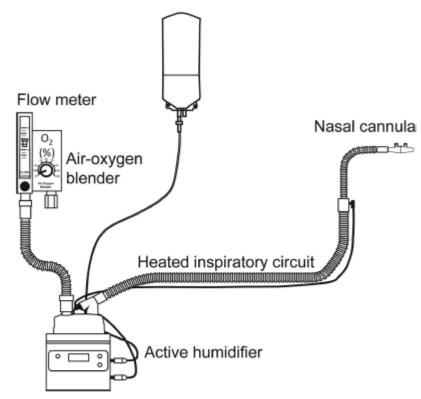
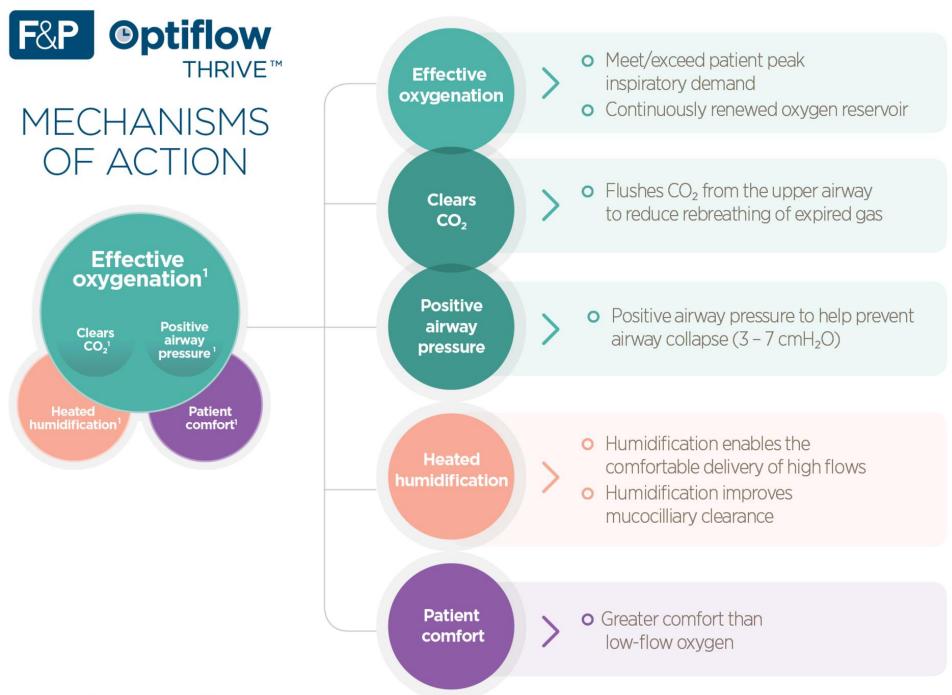
History of F&P Humidifiers

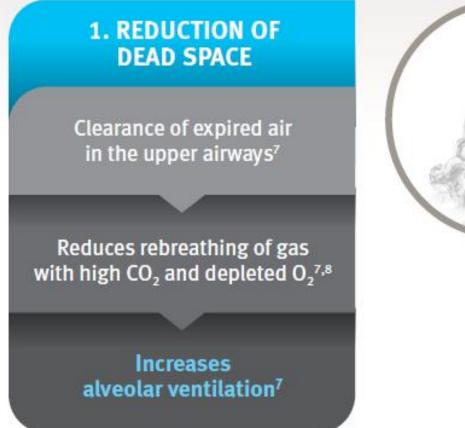
• 1934 F&P founded

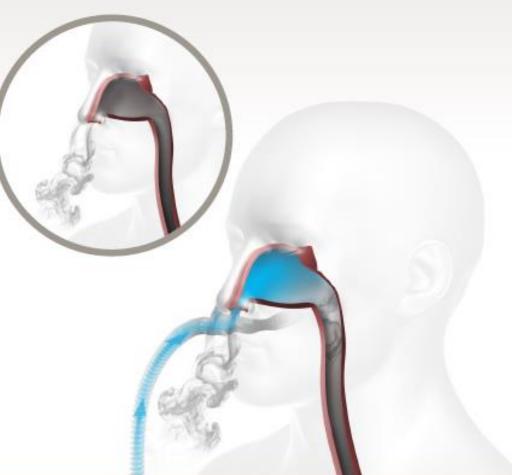
MR328	MR500	MR600	MR700	MR850
1972-1986	1982-1986	1985-1992	1992-	1999-

NHF & other acronyms

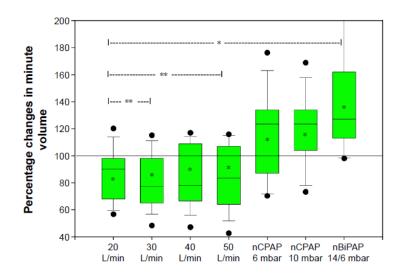
- NHF: Nasal High Flow
- HNHF: Humidified Nasal High Flow
- HFT: High Flow Therapy
- HFO: High Flow Oxygen
- HFOT: High Flow Oxygen Therapy
- HFNP: High Flow Nasal Prongs
- NHFO₂: Nasal High Flow Oxygen
- HFNC: High Flow Nasal Cannula
- HHFNC: Humidified High Flow Nasal Cannula
- HHHFNC: Heated & Humidified High Flow Nasal Cannula
- HHFT: Humidified High Flow Therapy
- HHFOT: Humidified High Flow Oxygen Therapy
- THRIVE: Transnasal Humidified Rapid-Insufflation Ventilatory Exchange

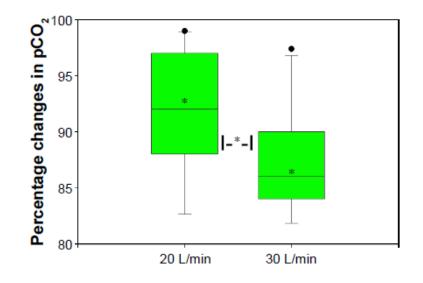




Fig. 1. Basic setup for high-flow nasal cannula oxygen delivery. An air-oxygen blender, allowing from 0.21 to 1.0 F_{IO_2} , generates up to 60 L/min flow. The gas is heated and humidified through an active heated humidifier and delivered via a single-limb heated inspiratory circuit. The patient breathes adequately heated and humidified medical gas through large-diameter nasal cannulas. (Modified from Reference 9.)



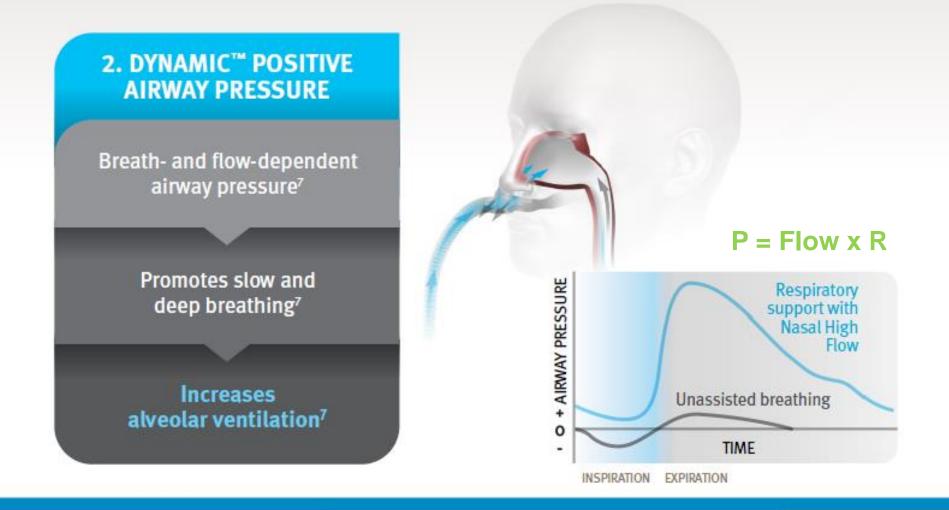
Respiratory support




Open Access Full Text Article

ORIGINAL RESEARCH

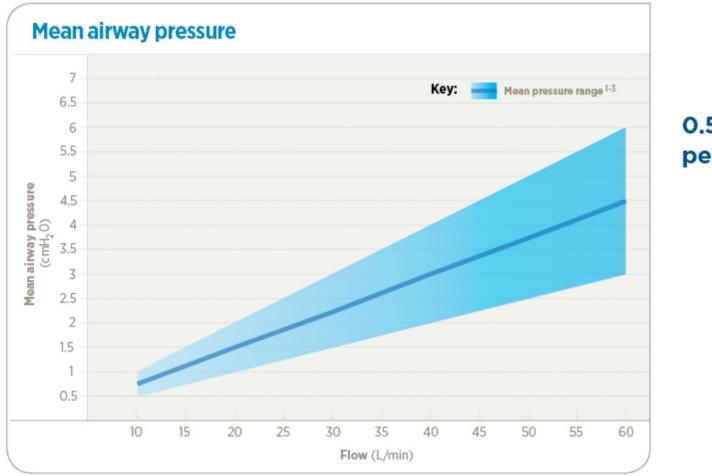
Nasal highflow improves ventilation in patients with COPD


Conclusion : NHF leads to flow-dependent reduction in pCO2. VT increased and minute volume decreased with pCO2 surprisingly reduced to more normal values. This is most likely achieved by a washout of the respiratory tract and a functional reduction in dead space.

This article was published in the following Dove Press journal: International Journal of COPD 25 May 2016 Number of times this article has been viewed

Respiratory support

Dynamic positive airway pressure


Respiratory support

> Dynamic positive airway pressure

- Pressure dynamically changes depending on breath and flow
- Inspiratory resistance decreases, making inspiration easier
- Expiratory resistance increases, leading to prolonged expiration

Positive Airway Pressure

0.5-1 cmH₂O per 10 L/min¹⁻³

Physiologic Effects of High-Flow Nasal Cannula in Acute Hypoxemic Respiratory Failure

Tommaso Mauri^{1,2}, Cecilia Turrini^{1,3}, Nilde Eronia⁴, Giacomo Grasselli¹, Carlo Alberto Volta³, Giacomo Bellani^{4,5}, and Antonio Pesenti^{1,2}

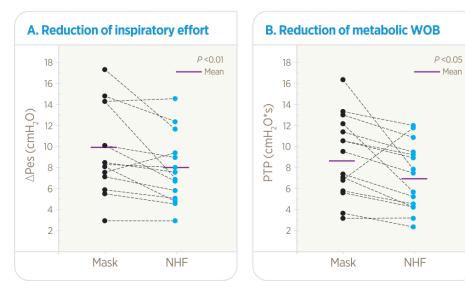
¹Department of Anesthesia, Critical Care and Emergency, IRCCS (Institute for Treatment and Research) Ca' Granda Maggiore Policlinico Hospital Foundation, Milan, Italy; ²Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; ³Department of Morphology, Surgery and Experimental Medicine, Section of Anesthesia and Intensive Care, University of Ferrara, Ferrara, Italy; ⁴Department of Emergency, San Gerardo Hospital, Monza, Italy; and ⁵Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy

Mauri et al. 2017

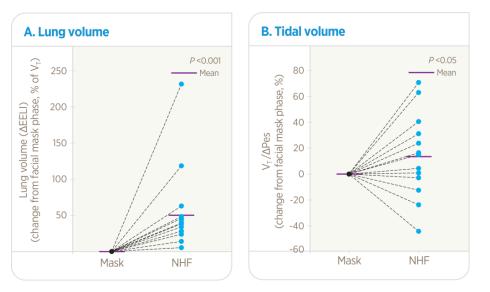
American Journal of Respiratory and Critical Care Medicine

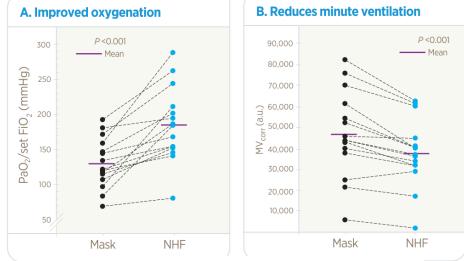
Physiologic Effects of Nasal High-Flow Cannula Treatment in Acute Hypoxemic Respiratory Failure

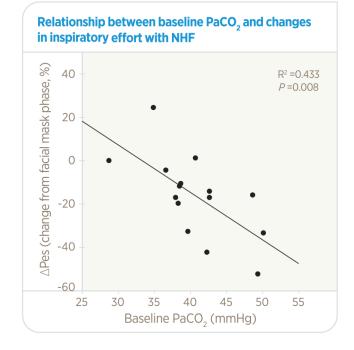
Methods N=15 AHRF, Non-intubated, in ICU P/F = 130±35


Mauri et al. 2017

- 15 Patients
- Completed two study phases with same set FiO₂ for <u>20 mins</u> in random order:
 - 1. Standard non-occlusive oxygen face mask (Standard Face Mask) set at 12 L/min
 - 2. NHF rate set at 40 L/min
- At the end of each phase, researchers collected and analyzed:
 - 1. Physiologic data (<u>ABG</u> analysis results, <u>respiratory rate</u> and <u>hemodynamics</u>)
 - 2. <u>Esophageal pressure</u> data
 - 3. <u>EIT</u> data

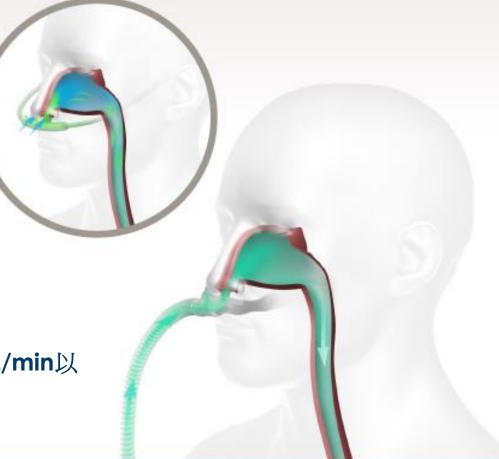



Effects of NHF vs. Standard Face Mask on inspiratory effort (A) and metabolic WOB (B)



Effects of NHF vs. Standard Face Mask on lung volume (A) and tidal volume (B)

Effects of NHF vs. Standard Face Mask on oxygenation (A) and minute ventilation (B)

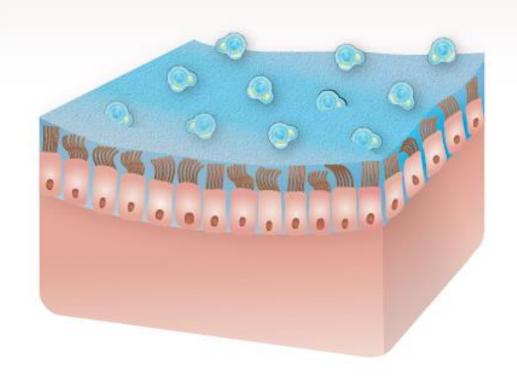

Respiratory support

3. SUPPLEMENTAL OXYGEN AS REQUIRED

Confidence in the delivery of blended, humidified oxygen^{9,10}

高流量氧氣濕化治療裝置:

- 1. FiO2較低流量裝置精準
- 2. 提供的氣流 > 吸入的氣流
- 3. 設定需**至少達2倍MV**,建議25L/min以 上

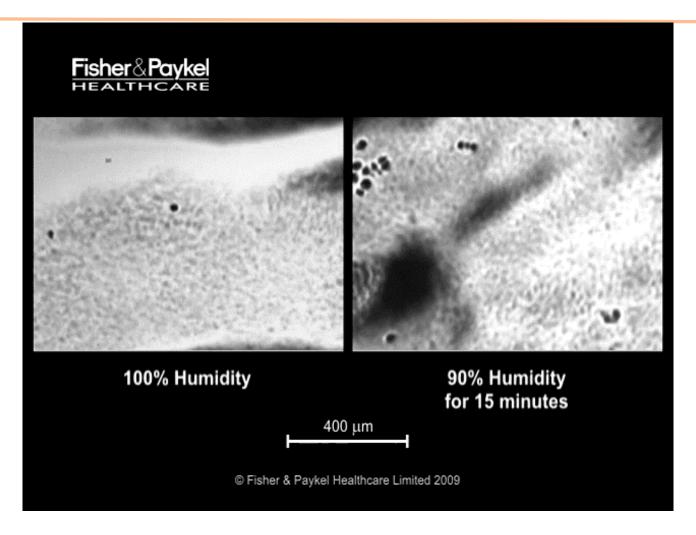


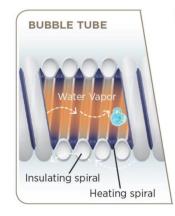
Airway hydration

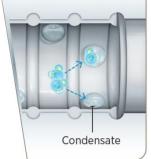
OPTIMAL HUMIDITY

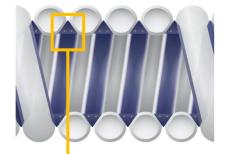
Prevents desiccation of the airway epithelium^{10,11}

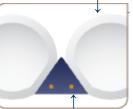
> Improves mucus clearance^{10,11}




Mucociliary Dysfunction


New AIRVO Circuit - 900PT561


- 1. 更輕巧!
- 2. 管路外圈包覆隔熱圈!
- 加熱線與管路一體成形
 呼吸阻力更小,加熱更均匀!
- 4. 减少至少93%冷凝水!

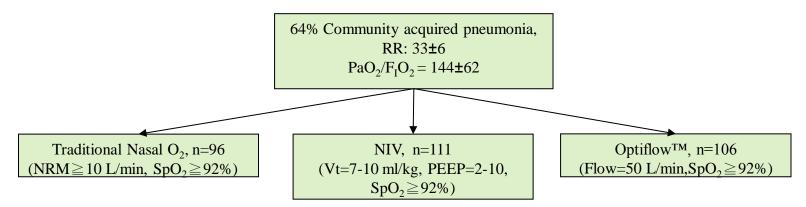

Manna I

CONVENTIONAL BREATHING CIRCUITS

Outer wall with insulating space

Inter wall with heater wire & less obtrusive

Evidence outline


- 1. Hypoxemia ARF
- 2. Hypercapnia ARF
- 3. ED
- 4. Rehabilitation
- 5. Homecare
- 6. Palliative Care
- 7. Immunocompromised
- 8. Surgical application
- 9. POR

High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure

Iean-Pierre Frat. M.D., Arnaud W. Thille, M.D., Ph.D., Alain Mercat, M.D., Ph.D.,

- N=313, spontaneous breathing pts with ARF during 02/2011-04/2013 in 23 French and Belgium ICU.
- Excluded: NIV contraindication, COPD, Pul. Edema, Circulatory shock, Glasgow<12

High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure

Jean-Pierre Frat, M.D., Arnaud W. Thille, M.D., Ph.D., Alain Mercat, M.D., Ph.D.,

Outcome		Study Group		P Value†
	High-Flow Oxygen (N=106)	Standard Oxygen (N=94)	Noninvasive Ventilation (N=110)	
Cause of death — no./total no. (%)				
Refractory shock	6/13 (46)	12/22 (55)	18/31 (58)	0.04
Refractory hypoxemia	5/13 (38)	6/22 (27)	8/31 (26)	0.73
Cardiac arrest	1/13 (8)	1/22 (5)	3/31 (10)	0.52
Other	1/13 (8)	3/22 (14)	2/31 (6)	0.52
Nasal Standard Noninvasive High Flow oxygen ventilation n=106 n=94 n=110		Nasal Standard High Flow oxygen n=83 n=74		

High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure

Jean-Pierre Frat, M.D., Arnaud W. Thille, M.D., Ph.D., Alain Mercat, M.D., Ph.D.,

		Reduced intubation rate (%)* P=0.009 *Patients with PaO ₂ FiO ₂ < 200 mmHg		Cause of Death - Refractory Shock(%) P=0.04				
Outcome	High-Flow Oxygen (N=106)	Study Group Standard Oxygen (N=94)	Noninvasive Ventilation (N=110)	P Value†≀		[值]	[值]	[值]
Cause of death — no./total no. (%)					30%			
Refractory shock	6/13 (46)	12/22 (55)	18/31 (58)	0.04	20%			
Refractory hypoxemia	5/13 (38)	6/22 (27)	8/31 (26)	0.73	10%			
Cardiac arrest	1/13 (8)	1/22 (5)	3/31 (10)	0.52	0%			
Other	1/13 (8)	3/22 (14)	2/31 (6)	0.52	0%	Nasal	Standard	Noninvasive
n=106 n=94 n=	110	n=83	n=74 n=8			High Flow n=13	Oxygen n=22	Ventilation n=31

NHF is not inferior to NIV

Research

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Postextubation High-Flow Nasal Cannula vs Noninvasive Ventilation on Reintubation and Postextubation Respiratory Failure in High-Risk Patients A Randomized Clinical Trial

Gonzalo Hernández, MD, PhD; Concepción Vaquero, MD; Laura Colinas, MD; Rafael Cuena, MD; Paloma González, MD; Alfonso Canabal, MD, PhD; Susana Sanchez, MD; Maria Luisa Rodriguez, MD; Ana Villasclaras, MD; Rafael Fernández, MD, PhD

CONCLUSIONS AND RELEVANCE Among high-risk adults who have undergone extubation, high-flow conditioned oxygen therapy was not inferior to NIV for preventing reintubation and postextubation respiratory failure. High-flow conditioned oxygen therapy may offer advantages for these patients.

NHF is not inferior to NIV

- Include patient type: Critically ill patients ready for planned extubation with at least 1 of the following high-risk factors for reintubation:
 - >65 y/o
 - APACHE II>12 points on extubation day
 - BMI ≥30
 - Inadequate secretions management
 - Difficult or prolonged weaning
 - >1 comorbidity
 - Heart failure as primary indication for mechanical ventilation
 - Moderate to severe COPD
 - Airway patency problems; or prolonged mechanical ventilation.

Primary outcome: Rate of reintubation

NHF was found to be non-inferior to NIV for preventing reintubation.

Outcome	NIV	NHF	Risk difference between groups (95% Cl)
Reintubated within 72	60	66	-3.7 (-9.1 to∞)
hours, n (%)	(19.1)	(22.8)	

Secondary outcomes:

Outcome	NIV	NHF	Absolute difference between groups (95% CI)
Median time to reintubation, hr (IQR)	21.5 (10 to 47)	26.5 (14 to 39)	-5 (-34 to 24)
Outcome	NIV	NHF	P value
Reintubations due to hypercapnic respiratory failure, n (%)	8 (2.5%)	6 (2%)	p = 0.63
Median ICU length of stay, days (IQR)	4 (2 to 9)	3 (2 to 7)	p = 0.048
Adverse events requiring treatment discontinuation for >18 hr, n (%)	135 (42.9)	0 (0)	p < 0.001

Other secondary outcomes were similar between groups.

Reduced 72 Hrs Reintubation Rate

Research

Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Postextubation High-Flow Nasal Cannula vs Conventional Oxygen Therapy on Reintubation in Low-Risk Patients A Randomized Clinical Trial

Gonzalo Hernández, MD, PhD; Concepción Vaquero, MD; Paloma González, MD; Carles Subira, MD; Fernando Frutos-Vivar, MD; Gemma Rialp, MD; Cesar Laborda, MD; Laura Colinas, MD; Rafael Cuena, MD; Rafael Fernández, MD, PhD

CONCLUSIONS AND RELEVANCE Among extubated patients at low risk for reintubation, the use of high-flow nasal cannula oxygen compared with conventional oxygen therapy reduced the risk of reintubation within 72 hours.

- Able to eat, drink, speak to family while palliation Tx
- Lessening distress of patient
- Lessening distress of family
- Comfortable death with pink face vs. NRM with pale one
- Warm ad reduce dryness feel to patients

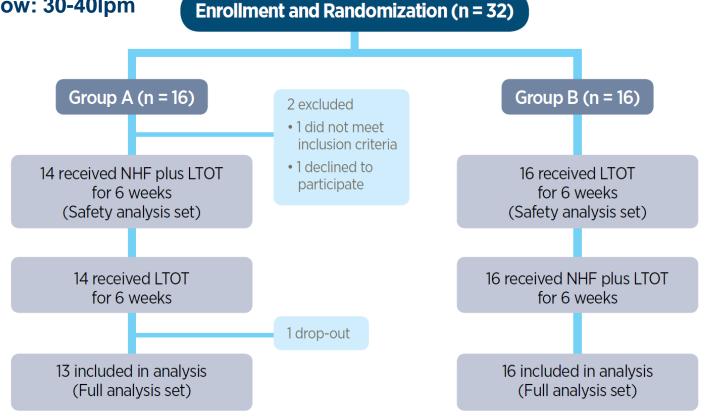
Domiciliary High-Flow Nasal Cannula Oxygen Therapy for Patients with Stable Hypercapnic Chronic Obstructive Pulmonary Disease A Multicenter Randomized Crossover Trial

Kazuma Nagata¹, Takashi Kikuchi², Takeo Horie³, Akira Shiraki⁴, Takamasa Kitajima⁵, Toru Kadowaki⁶, Fumiaki Tokioka⁷, Naohiko Chohnabayashi⁸, Akira Watanabe⁹, Susumu Sato¹⁰, and Keisuke Tomii¹

Conclusions

Nagata et al. 2018

ORIGINAL RESEARC


 <u>NHF improves QoL and reduces hypercapnia in COPD patients</u> with chronic hypercapnic respiratory failure.

 NHF is well tolerated and no related severe adverse events occurred during therapy.

Methods

Nagata et al. 2018

- Use ≥ 4hrs/sleep time
- Flow: 30-40lpm

No COPD AE in NHF/LTOT

Secondary outcomes • 3 COPD AE in LTOT

- NHF/LTOT improved the following significantly compared with LTOT alone:
 - Each component of the SGRQ-C
 - Arterial blood gas: pH, PaCO₂
 - Nocturnal PtcCO₂ (95th percentile and median)

	ADJUSTED TREATMENT EFFECT (95% CONFIDENCE INTERVAL)	P VALUE			
Arterial blood gas					
• pH	0.02 (0.01, 0.02)	0.01			
• PaCO ₂ (mmHg)	-4.1 (-6.5, -1.7)	< 0.01			
Nocturnal PtcCO ₂ (mmHg)					
• 95 th percentile	-4.8 (-8.1, -1.5)	< 0.01			
• Median	-5.1 (-8.4, -1.8)	< 0.01			

Fisher&Paykel

Nagata et al. Annals of the American Thoracic Society. 2018.

Rea et al. 2010

PATIENT DEMOGRAPHICS

Respiratory Medicine

REDUCES exacerbation days

INCREASES time to first exacerbation

REDUCES antibiotic use STUDY

A comparison of long-term humidification therapy using nasal high flow (NHF) with usual care in COPD and bronchiectatic patients.

METHOD

- 108 patients were randomized to usual care (n = 48) or NHF therapy (n = 60) at a flow rate of 20-25 L/min for ≥ 2 hours per day.
- Primary outcome: rate of exacerbations per patient over a <u>12-month</u> period.
- Secondary outcomes: time to first exacerbation, no. of exacerbated days and hospital admissions, quality of life, lung function, exercise capacity and inflammatory markers.

RESULTS

- Exacerbation frequency was 3.63 (Usual care) vs 2.97 (NHF) per patient per year, but was not statistically significant (p=0.067)
- NHF significantly reduced the number of exacerbation days over a 12-month period from **33.5 to 18.2 days** (p=0.045)

 Median time to first exacerbation was significantly longer on NHF:
 27 to 52 days (p=0.0495)

- NHF significantly reduced antibiotic use from 38.5% to 22.8% of patients (p=0.008).
 All other medication use was similar.
- There were also significant differences in QoL and lung function measures.
- There were no significant differences in hospital admissions, exercise capacity or inflammatory markers
- > The mean use time was **1.6 hours** per day

International Journal of COPD

Open Access Full Text Article

CLINICAL TRIAL REPORT

Long-term effects of oxygen-enriched high-flow nasal cannula treatment in COPD patients with chronic hypoxemic respiratory failure

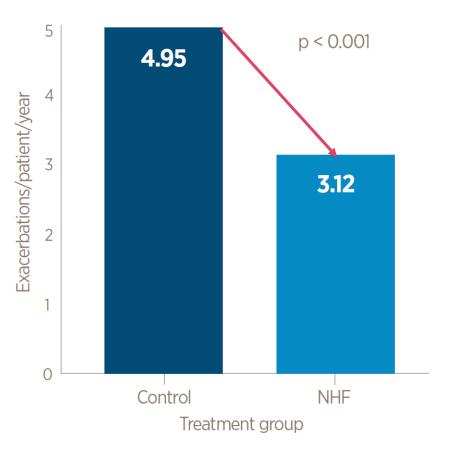

Conclusions

Storgaard et al. 2018

- NHF reduced AECOPD and hospital admission rates in COPD patients with chronic hypoxemic respiratory failure treated with LTOT.
- <u>NHF stabilized</u> the clinical condition of advanced COPD patients as measured by <u>mMRC score</u>, SGRQ, PaCO₂, and 6MWT compared to control.

Methods

Storgaard et al. 2018



Results

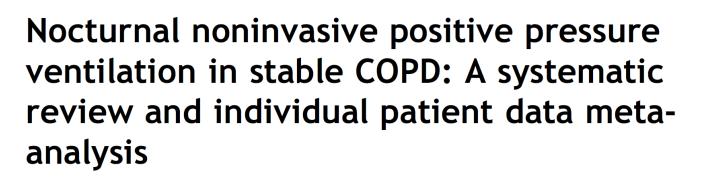
Storgaard et al. 2018

Primary outcome (intention to treat analysis)

 AECOPD rates were significantly lower in patients in the NHF + LTOT group compared to the LTOT only group

Secondary outcomes

- NHF with LTOT compared to LTOT alone improved:
 - Hospital admission rates for those who followed the protocol
 - mMRC score
 - SGRQ score
 - PaCO₂
 - 6MWT
- Mortality: no difference between the 2 groups



Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/rmed

respiratory MEDICINE

2

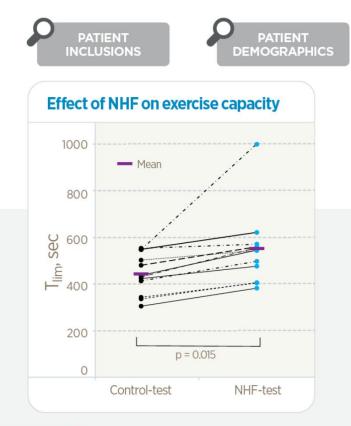
```
F.M. Struik <sup>a,b,*</sup>, Y. Lacasse <sup>c</sup>, R.S. Goldstein <sup>d</sup>,
H.A.M. Kerstjens <sup>a,b</sup>, P.J. Wijkstra <sup>a,b</sup>
```

Results: Seven trials (245 patients) were included. All studies were considered of moderate to high quality. No significant difference was found between NIPPV and control groups after 3 or 12 months of follow-up when looking at $PaCO_2$ and PaO_2 , 6-minute walking distance, health-related quality-of-life, forced expiratory volume in 1 s, forced vital capacity, maximal inspiratory pressure and sleep efficiency. Significant differences in change in $PaCO_2$ after 3 months

Cirio et al. 2016

Respiratory Medicine • FEV1< 50%

6MWT<75% predicted


INCREASES exercise endurance

STUDY

A randomized, crossover study, comparing exercise performance with and without nasal high flow (NHF vs Control) in patients with severe COPD admitted to a Pulmonary Rehabilitation program

METHOD

- 12 clinically stable severe COPD patients completed <u>constant-load</u> exercise tests on exercise bicycles, randomized to NHF (55-60 L/min) or Control (Venturi mask connected to compressed air) first. O₂ was added if required
- Primary outcome: Endurance time for each test (T_{lim})
- Secondary outcomes: SaO₂, heart rate, blood pressure, O-10 Borg scale for dyspnea (Borg-D) and leg fatigue (Borg-F)

RESULTS

- All patients had improved T_{lim} with NHF compared to Control: mean difference (± SD) 109 ± 104 secs (p = 0.015)
- NHF also showed improved SaO₂, dyspnea and leg fatigue scores compared to Control at iso-time (the maximum time reached by both tests)

Anaesthesia 2015, 70, 323-329

doi:10.1111/anae.12923

Original Article

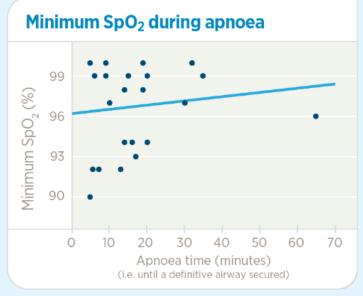
Transnasal Humidified Rapid-Insufflation Ventilatory Exchange (THRIVE): a physiological method of increasing apnoea time in patients with difficult airways

A. Patel^{1,2} and S. A. R. Nouraei³

1 Consultant Anaesthetist, The Royal National Throat Nose and Ear Hospital, London, UK 2 Consultant Anaesthetist, 3 Specialist Registrar in Academic Otolaryngology, University College Hospital NHS Foundation Trust, London, UK

Optiflow THRIVE[™] Extend Safe Apnoea Time

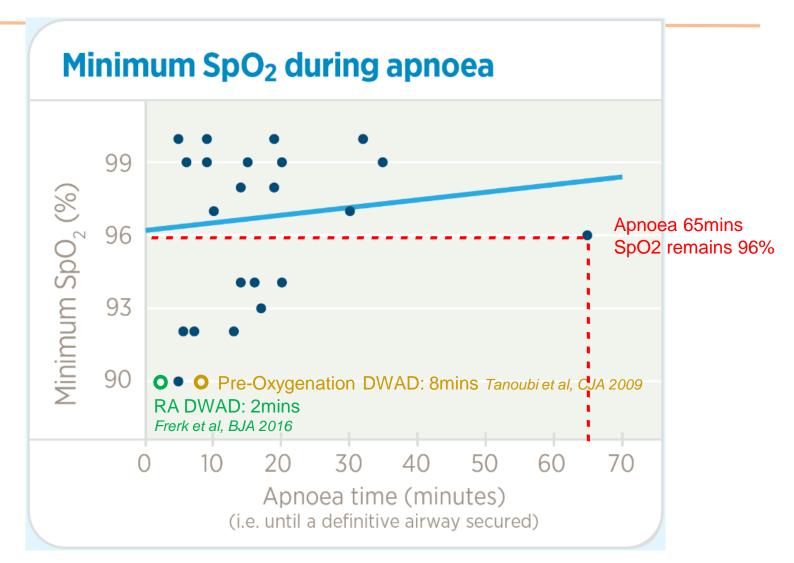
PATEL 2015 Extend safe apnoea time in difficult airways

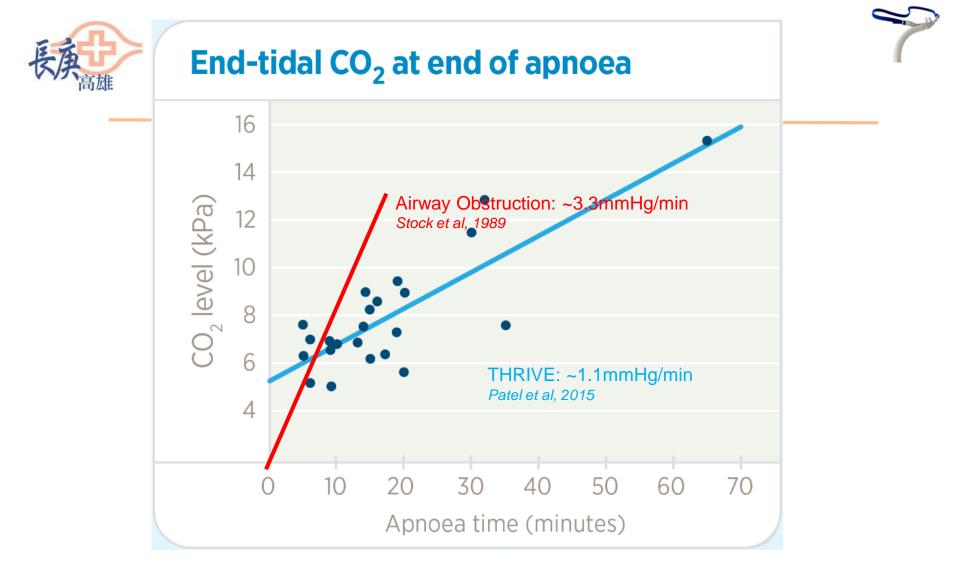

METHOD

- Observational study
- 25 patients with difficult airways for hypopharyngeal or laryngotracheal surgery
- Optiflow THRIVETH used for initial preoxygenation and continued for apnoeic oxygenation (70 L/min, 100 % oxygen) during IV induction
- Jaw thrust used to maintain upper airway patency during apnoea

RESULTS

Prevented desaturation below 90 %


Increased average apnoea time to 17 minutes



Adapted from Patel & Nouraei, 2015.

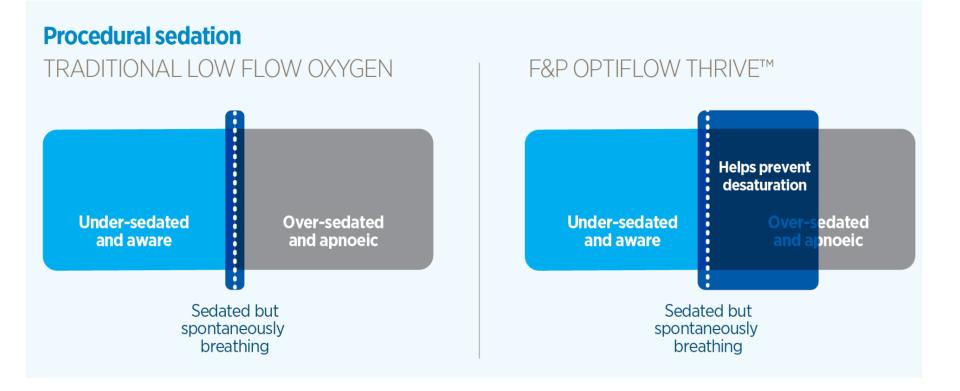
Emergency Airway Obstruction

Transcatheter aortic valve Implantation, TAVI	Junior painless dental surgery	Special needs dental surgery	Drug induced sleep endoscopy, DICE
Non-Intubated VATs	Awake craniotomy	Plastic surgery	Bariatric surgery
PACU recovery (ERAS)	Laryngo micro surgery, LMS	Radio frequent catheter ablation, RFCA	Radiofrequency ablation, RFA
Pre-oxygenation	Health examination	Vertebroplasty	Tendon repair
Ophthalmic surgery	Obstetrics surgery	ERCP	Gynecology
Tympanic membrane repair	Breast surgery	Vasectomy & Ligation surgery	Cryoablation
Urology surgery	Cardiac catheterization	Image-guided biopsy	Embolization
Stent Placement	TOE/TEE	EBUS/EUS	Angioplasty

Non-intubated VATs

Start OP ABG

Jest	Results		Test F	Ranges
BLOOD G	AS	Units	Low	High
k₁+	7.350		6.500	0.000
pCO2	43.2	mmHg	3.0	8.000
¢02	410.9	mmHg	0.0	200.0
Hot	36	%	12	800.0
CALCULA	TED	10	12	70
Hb	12.1	g/dL		
HCO3-	24.0	mmol/L		
BEecf	-1.8	mmol/L		
SiO2%	100.0			
CHEMISTR	24			
Na+	141.0	mmol/L	80.0	200.0
K+	3.59	mmol/L	1.00	20.00
Ca++	1.24	mmol/L	0.10	2.70
Glu	109	mg/dL	15	500
	0.8	mmo/L	0.3	20.0
Lac Fleported by		Time:	-	1


• 1 hour later ABG

lest	Results	Units	Low	High
BLOOD G	AS			1000
kiHi	7.308		6.500	8.000
pCO2	41.4	mmHg	3.0	200.0
pO2	74.2	mmHg	0.0	800.0
Hist	37	%	12	70
CALCULA	ITED			
Hb	12.2	g/dL		
HCO3-	21.0	mmol/L		
BEecf	-5.6	mmol/L		
SO2%	93.2			
CHEMISTI	RY			
Na+	141.9	mmol/L	80.0	200.0
K+	3.51	mmol/L	1.00	20.00
Ca++	1.25	mmol/L	0.10	2.70
Glu	116	mg/dL	15	500
	0.6	mmol/L	0.3	20.0
Lac		Time:		
Fleported b	y	14	ALC: NO	

A New Standard Care

During procedural sedation, Optiflow THRIVE[™] helps to improve patient safety by helping <u>prevent desaturation</u> and <u>extend the safe</u> <u>apnoeic window</u> should apnoea occur.

Optiflow THRIVE in PACU groupings

- 肥胖(Obesity)
- 高齡(Elderly)
- Post-ENT surgery(耳鼻喉科術後)
- Post-Cardiac Surgery(開心術後)
- OSA(睡眠呼吸中止症)
- Special disease Ex: MG, Had fail extubation record, Difficult secretion remove…

LUCANGELO 2012 Procedural sedation (Bronchoscopy)

RESULTS

Outcome	Venturi Mask 40 L/min	Optiflow THRIVE [™] 40 L/min	Optiflow THRIVE [™] 60 L/min
Bronchoscopy duration (minutes)	15	14	15
Baseline SpO ₂ % (median)	94	95	95
End of bronchoscopy SpO ₂ % (median)	94	92	98*

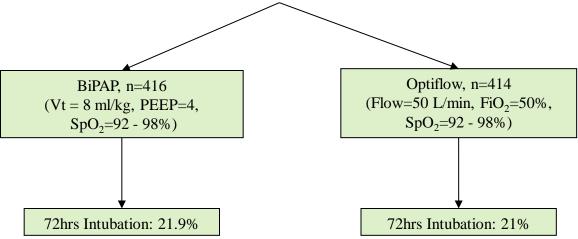
*Significantly different from Venturi mask and Optiflow THRIVE", 40 L/min

CONCLUSION

Optiflow THRIVE[™] at 60 L/min may better protect patients with mild respiratory dysfunctions from desaturations during bronchoscopy

No Difference in Intubation Rate!

Research


Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

High-Flow Nasal Oxygen vs Noninvasive Positive Airway Pressure in Hypoxemic Patients After Cardiothoracic Surgery A Randomized Clinical Trial

François Stéphan, MD, PhD; Benoit Barrucand, MD; Pascal Petit, MD; Saida Rézaiguia-Delclaux, MD; Anne Médard, MD; Bertrand Delannoy, MD; Bernard Cosserant, MD; Guillaume Flicoteaux, MD; Audrey Imbert, MD; Catherine Pilorge, MD; Laurence Bérard, MD; for the BiPOP Study Group

 N=830, surgical cardiac pts with post=op ARF during 06/2011-12/2013 in 6 French ICU.

Blaudszun et al. 2017

Abstract - Association for Cardiothoracic Anaesthesia and Critical Care Conference, Birmingham, 2017

Cardiac surgical patients are at high risk of postoperative pulmonary complications.

METHOD

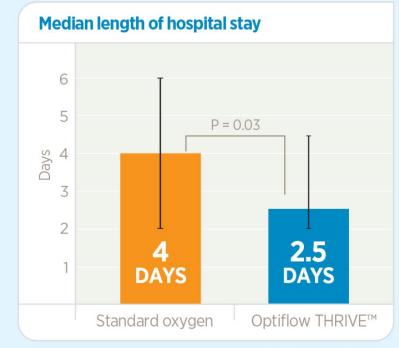
- Prospective, randomized, controlled trial
- 99 adult patients with high risk for post-operative pulmonary complications undergoing elective cardiac surgery
- O Oxygen therapy administered for 24 hours, post-extubation
 - 1. Optiflow NHF
 - 2 Standard oxygen (SO)

RESULTS

- Optiflow NHF led to a 31% relative reduction in mean hospital length of stay by 4.7 days (13.4 days with SO, Optiflow NHF 8.6 days)
- Optiflow NHF was associated with significantly fewer ICU re-admissions (7/48 in SO group, 1/51 in Optiflow NHF group)

CONCLUSION

 "When compared with standard care, prophylactic postoperative use of HFNO (Optiflow NHF) in high-risk cardiac surgial patients reduced hospital stay and re-admission to ICU."


ANSARI 2015 PACU

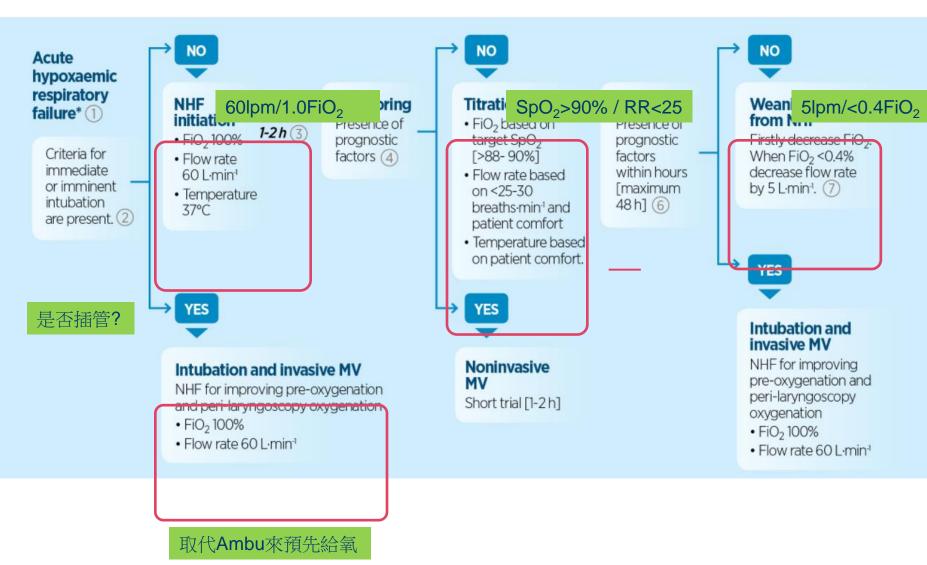
METHOD

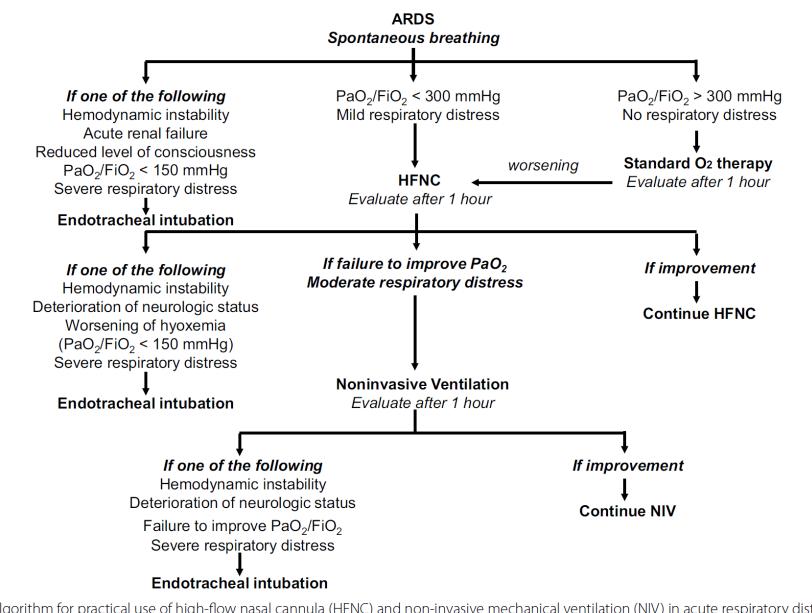
- ▷ 59 elective lung resection surgery patients
- Randomized controlled trial
- Compared efficacy of prophylactic use of Optiflow THRIVE[™] (20 - 50 L/min, FiO₂ titrated to SpO₂ ≥ 93%) and low flow oxygen (2 - 4 L/min face mask or nasal prong, FiO₂ titrated to SpO₂ ≥ 93%) for 24 hours post-operatively on early functional outcome (6 Minute Walk Test, 6 MWT)

RESULTS

- Compared to standard care, low flow oxygen:
 - No difference in the 6 MWT
 - Optiflow THRIVE[™] significantly reduced length of hospital stay from 4 days (standard care) to 2.5 days

Adapted from Ansari, 2016.


Summary & Flow Setting


					Key: 🗾 Flow range			🛑 Starting flow			M	1ean flow				
						Flow L/min										
Guidance source Category description			10	15	20	25	30	35	40	45	50	55	60			
	Hernández et al Oct 2016	extubated patients at high risk of reintubation ¹									•					
	Hernández et al Apr 2016	extubated patients at low risk of reintubation ²					•	*								
ESS	Bell et al 2015	acute undifferentiated shortness of breath in the ED ³									•					
STR	Frat et al 2015	acute hypoxemic respiratory failure (pre-intubation) ⁴									•					
۲DI	Stéphan et al 2015	hypoxemic patients post cardiothoracic surgery ⁵									•					
ATOR	Maggiore et al 2014	post extubation with acute respiratory failure ⁶									•					
RESPIRATORY DISTRESS	Peters et al 2012	do not intubate patient with hypoxemic respiratory distress ⁷							(
RES	Sztrymf et al 2011	acute respiratory failure ⁸											1			
	Parke et al 2011	mild-to-moderate hypoxemic respiratory failure®						•								
	Corley et al 2011	post-cardiac surgery ¹⁰						•								
NIC	Cirio et al 2016	stable severe COPD patients ¹¹											0			
CHRONIC	Rea et al 2010	COPD, bronchiectasis ¹²														
С С	Hasani et al 2008	bronchiectasis ¹³														

* at 12 hours post extubation

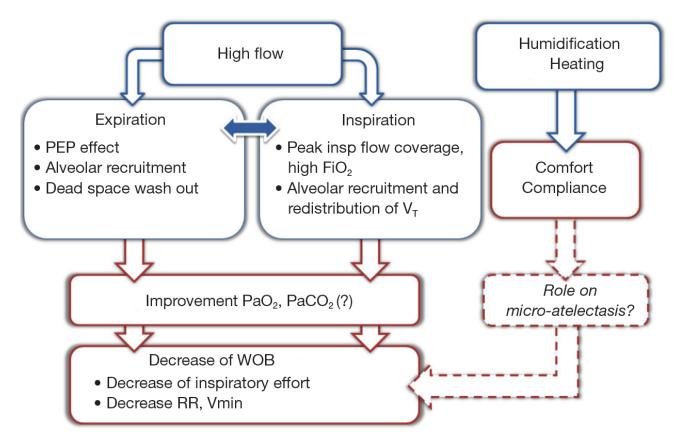
1. Hernández et al. JAMA. Oct 2016. 2. Hernández et al. JAMA. Apr 2016. 3. Bell et al. Emerg Med Australas. 2015. 4. Frat et al. N Engl J Med. 2015. 5. Stéphan et al. JAMA. 2015. 6. Maggiore et al. Am J Respir Crit Care Med. 2014. 7. Peters et al. Paspir Crit Care Med. 2012. 8. Sthurm fot al. Intervine Care Med. 2011. 10. Cortou et al. Per J. Japanet 2012. 8. Sthurm fot al. Japanet 2016. 13. Hasani et al. Chron. Paspir Crit. Care Med. 2011. 10. Cortou et al. Per J. Japanet 2012. 8. Sthurm fot al. Japanet 2010. 13. Hasani et al. Chron. Paspir Crit. Care Med. 2011. 10. Cortou et al. Per J. Japanet 2012. 8. Sthurm fot al. Japanet 2010. 13. Hasani et al. Chron. Paspir Crit. Care Med. 2011. 10. Cortou et al. Per J. Japanet 2012. 8. Sthurm fot al. Japanet 2010. 13. Hasani et al. Chron. Paspir Crit. Care Med. 2011. 10. Cortou et al. Per J. Japanet 2011. 11. Circle et al. Japanet 2012. 8. Sthurm fot al. Japanet 2010. 13. Hasani et al. Chron. Per J. Japanet 2012. 8. Sthurm fot al. Japanet 2010. 13. Hasani et al. Chron. Per J. Japanet 2012. 8. Sthurm fot al. Japanet 2010. 13. Hasani et al. Chron. Per J. Japanet 2012. 8. Sthurm fot al. Japanet 2012. 8. Sthur

Ischaki et al. 2017 Ischaki. Eur Respir Rev. 2017.

Fig. 1 Algorithm for practical use of high-flow nasal cannula (HFNC) and non-invasive mechanical ventilation (NIV) in acute respiratory distress syndrome (ARDS)

什麼時候可以看到 - Optiflow[™] 經鼻高流量氧氣濕化治療的療效?

Sztrymf 等人[®]指出, Optiflow 經鼻高流量氧氣濕化治療, 能改善急性呼吸衰竭患者的血 氧, 並能改善生理參數。


同樣地, Rittayamai 等人[™]也發 現對拔管後患者有顯著改善。

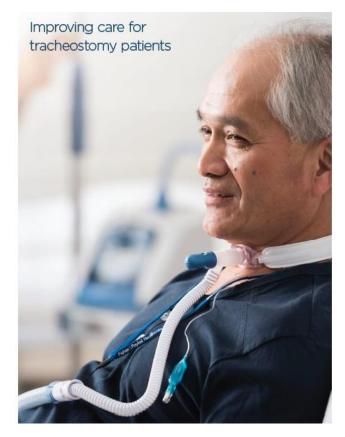
這些研究可以為患者對於治療的反應提供參考。

High-flow nasal oxygen therapy and noninvasive ventilation in the management of acute hypoxemic respiratory failure

Jean-Pierre Frat^{1,2,3}, Rémi Coudroy^{1,2,3}, Nicolas Marjanovic^{2,3,4}, Arnaud W. Thille^{1,2,3}

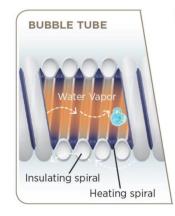
Physiological effects of HFNC oxygen therapy. HFNC, high-flow nasal cannula.

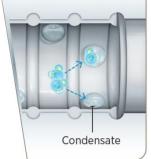
Interfaces & Circuits

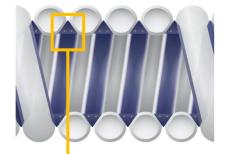


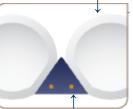
Optiflow - The Power of ONE

- 插管前使用,如:呼吸衰竭、
 急性肺水腫、一氧化碳中毒等
- 2. 取代部分BIPAP與NC
- 3. 拔管後使用
- 4. 一種介面取代所有介面

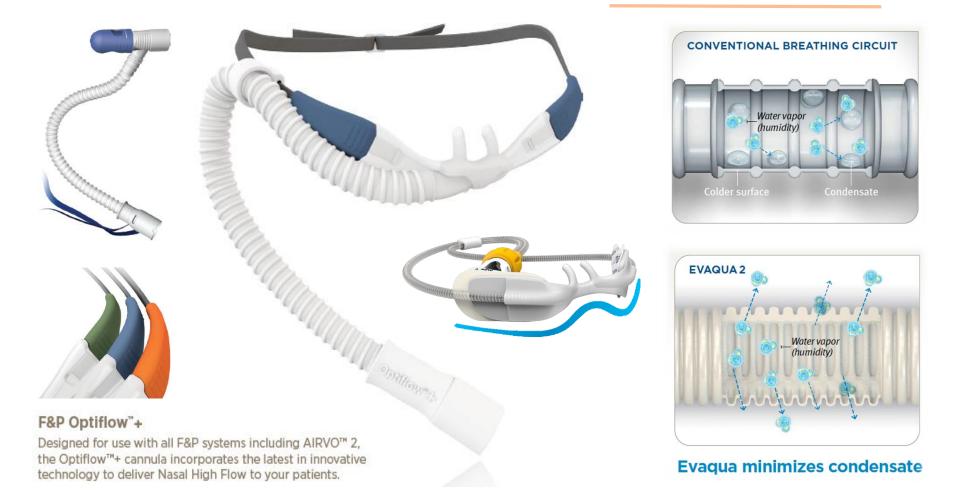



New AIRVO Circuit - 900PT561


- 1. 更輕巧!
- 2. 管路外圈包覆隔熱圈!
- 加熱線與管路一體成形
 呼吸阻力更小,加熱更均匀!
- 4. 减少至少93%冷凝水!


Manna I

CONVENTIONAL BREATHING CIRCUITS


Outer wall with insulating space

Inter wall with heater wire & less obtrusive

Optiflow+ Interfaces

					管掴	管介	面		呼	吸罩介	面轉接	器				
OPT842 OPT844 OPT846	OPT316 OPT318 (請參閱 "使用 AIRVO 2" - "兒童模式")				OP	T870				RT013	(帶面罩)					
			\bigcap	I	°C				\approx	L/min						
ſ	Patient Int	erface	31	0 34	37	2	5	10	15 2	0 25	!	50 55	60			
900PT561	I	OPT316 🐝 OPT318 🥩		•		2 2			20	25						
		OPT942 (S) OPT944 (M)		•	•			10 10			5	0	60			
		OPT946 🛈		•	•			10					60			
		OPT970 OPT980	•	•				10 10					60 60			
900PT501		OPT842 (S)		ě				10			5	0	_			
and the second		OPT844 M		•	•			10					60			
	Pr-	орт846 (L) орт870		•				10 10					60 60			
		RT013		•	•			10					60			

除鼻導管介面, 也有Endo/Tr轉 介面!符合不同 病患需求!

- High-flow nasal cannula (HFNC) oxygen therapy is able to deliver adequately heated and humidified medical gas at flows up to 60 L/min, it is considered to have a number of physiological advantages compared with other standard oxygen therapies, including reduced anatomical dead space, PEEP, constant FIO2, and good humidification.
- Few large randomized clinical trials have been performed, HFNC has been gaining attention as an alternative respiratory support for critically ill patients, such as hypoxemic respiratory failure, exacerbation of COPD, postextubation, preintubation oxygenation, sleep apnea, acute heart failure, and conditions entailing do-notintubate orders.
- Some important issues remain to be resolved, such as definitive indications for HFNC and criteria for timing the starting and stopping of HFNC and for escalating treatment.
- HFNC has emerged as an innovative and effective modality for early treatment of adults with respiratory failure with diverse underlying diseases.