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Accounting for Label Uncertainty in Machine Learning for Detection
of Acute Respiratory Distress Syndrome

Narathip Reamaroon, Michael W. Sjoding, Kaiwen Lin, Theodore J. Iwashyna,
and Kayvan Najarian, Senior Member, IEEE
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What is Al ?

Al = ARTIFICIAL INTELLIGENCE
[ATEREG)]
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What is Al?

Deep Learning

The subset of machine learning
composed of algorithms that permit
software to train itself to perform tasks,
like speech and image recognition, by
exposing multilayered neural networks to
vast amounts of data.

https://www.geospatialworld.nee e-learning-and-deep-learning/




* Artificial intelligence:

— Any technique that enable computer to mimic human
intelligence, using logic, if-then rules, decision trees, and
machine learning (including deep learning)

* Machine learning:

— A subset of Al that includes abstruse statistical
techniques that enable machines to improve at tasks
with experience. The category includes deep learning.

* Deep learning:

— The subsets of machine learning composed of algorithms
that permit software to train itself to perform tasks, like
speech and image recognition, by exposing multilayered
neural networks to vast amounts of data.



Artificial intelligence (Al)

* In computer science, artificial intelligence (Al),
sometimes called machine intelligence, is
intelligence demonstrated by machines, in
contrast to the natural intelligence displayed by
humans and animals.

* The core problems of Al include programming
computers for certain traits such as: Knowledge,
Reasoning, Problem solving, Perception, Learning,
Planning, Ability to manipulate and move objects.


https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Intelligence
https://en.wikipedia.org/wiki/Machine
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https://www.sciencedirect.com/science/article/pii/S0007681318301393
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Machine Learning

* The field of study that focuses on how computers
learn from data and the development of
algorithms that make this learning possible

— Supervised learning (BB 223E):

— Algorithms that are used to uncover the
relationship between a set of features and one
or more known outcomes

— Unsupervised learning (FEESEE3E):

— Algorithms that are used to uncover naturally
occurring patterns or groupings in the data,
without targeting a specific outcome



Machine Learning
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Big data

* Digital data that are generated in high volume
and high variety and that accumulate at high
velocity, resulting in datasets too large for

traditional data-processing systems




Algorithms ((EE )

* |[n mathematics and computer science, an
algorithm is an unambiguous specification of
how to solve a class of problems.

e Algorithms can perform calculation, data
processing, automated reasoning, and other

tasks.



https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Unambiguous
https://en.wikipedia.org/wiki/Calculation
https://en.wikipedia.org/wiki/Data_processing
https://en.wikipedia.org/wiki/Automated_reasoning

Models

Model training

— The process through which machine learning algorithms develop a model of the
data by learning the relationships between features and, in supervised learning,
between features and outcomes. This is also referred to as model derivation or
data fitting

Model validation (Model testing)

— The process of measuring how well a model fits new, independent data. For
example, evaluating the performance of a supervised model at predicting an
outcome in new data.

Predictive model

— A model generally trained to predict the likelihood of a condition, event, or
response. The US FDA specifically considers predictive strategies as those geared
toward identifying groups of patients more likely to respond to an intervention

Prognostic model

— A model specifically trained to predict the likelihood of a condition-related
endpoint or outcome such as mortality. In general, the goal is to estimate a
prognosis given a set of baseline features, regardless of what ultimately leads to
the outcome
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supervised
unsupervised
content extraction
classification
machine translation
question answering

text generation

image recognition
machine vision

speech to text

text to speech

machine learning

natural language
processing (NLP

Artificial Intelligence
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expert systems

vision

speech

planning

robotics
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Conceptual Overview of
Supervised Machine Learning

A Preparing to Build a Model
Task Definition

Conceptual task: Translate text into another language

More precise task: Convert short snippets of text from English to Spanish

Data Collection

Raw data: Transcripts from clinical encounters in which a medical

translator participated

Data Preparation

Example of raw input:
“I started feeling pain across
my chest.” el pecho.”

Example of raw output:
“Empecé a sentir un dolor por todo

Example of features:
[<1>, <58>, <145>, <3>, <5>, <67>,
<22>, <15>, <100>]
<203>]

Example of label:
[<934>, <1024>, <2014>, <955>,
<1001, <1500=, <1643>, <1923>,

|
|
|
|

Machine learning starts with a task definition that
specifies inputs and corresponding outputs.

After defining the task, a data set from instances
in which the task has already been performed
is collected.

The raw data are preprocessed to produce examples
of inputs consisting of a set of features and an output,
referred to as a label. In this example, the features are
numerical tokens that correspond to words in the raw
text (e.g.,“chest” is represented by the token <100>).

The set of processed examples is divided into two sets.
The first, the training data set, is used to build the
model. The second, the test set, is used to assess

how well the model performs.

N Engl ] Med 2019;380:1347-58.



B Training a Model

1. Example is run
through the model

( Training example ]9,

l®

4. Repeat with new

example

C Evaluating a Model

[ Label for example ]

2. Predicted label is
compared with
ground-truth label

@

Prediction for
example

Machine-Learning
Model

1o

3. If the prediction was
incorrect, the training
procedure specifies how
to update model param-
eters to make the model
more likely to make the
correct prediction for this
example and similar examples

-~

Test examples

)

——{=

-

Machine-
Learning
Model

Labels for
test set

Predictions
for test set

During model training, an example from the training
set is sent through a machine-learning system,
which provides a mathematical function that
converts features to a predicted label. A simple
example is a linear function, y'=ax,+bx,+c, where
y'is the predicted label, x, and x, are the features,
and a, b, and c are parameters. The model para-
meters are initially randomly assigned, and in the
first iteration, the predicted label y' is generally
unrelated to the ground-truth label.

In the key step of machine learning (step 3),

an algorithm determines how the parameters need
to be modified to make the prediction more likely
to match the ground truth. The system iterates
through all the examples in the training data,
potentially multiple times, to complete training.

The test set is then run through the final

model. Statistics are computed, and the predictions
of the test set are compared with the ground-truth
labels.

To apply the model, new input examples, which
have not been previously labeled, can be run
through the model. However, the model learns
patterns from data only in the training set, so if
new examples are sufficiently different from those
in the training data, the model may not produce
accurate predictions for them.

N Engl ] Med 2019;380:1347-58.



Build CNN models and evaluation

Limb dataset
PXR dataset

Classification

CNN models
Image pre-processing

.- Pre-train weights

-
Classification DenseNet121
CNN models

Hyperparameter adjustment: Compare accuracy
Learning rate, Epoch, Augmentation, between each models
Batch size...

Independent : : Compare accuracy between
Final testing .
test set physician and model
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Artificial Intelligence (Al) in Medicine
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ELIZA-BEGINNING OF ERA OF
ARTIFICIAL INTELLIGENCE

? etherealcreation (45~ 7f science =

ELIZA > (PLEASE TYPE IN ALL CAPS) WHAT'S YOUR NAME DEAR 7

AMLT

ELIZA > HL, I'M ELIZA. WHAT DO YOU WANT TO TALK ABOUT ?

AMIT > CAN I TALK ABOUT MY PROBLEM 7

ELIZA > SURE. .. !

AMIT > DUE TO ON GOING EXAMS IN COLLEGE, I HAVE A LOT OF STRESS.
ELIZR > PLEASE RELAX A LITTLE. SLEEP WELL.

AMIT > THANKS FOR YOUR ADVICE.

ELIZA > NO MENTION.

AMIT > BYE

I~




Look at a ridiculous conversation between Eliza and Parrry From 1972

Network Working Group V. Cerf
Request for Comments: 439 SU-ERL
NIC: 13771 21 January 1973

PARRY Encounters the DOCTOR

The session recorded below actually happened on 18 September 1972 and
is herewith reproduced for your entertainment.

Good Evening.

Tell me your problems. Please terminate input with a period or a
question mark.

*People get on my nerves sometimes.

I am not sure I understand you fully.
*You should pay more attention.
Suppose you should pay more attention.

*You're entitled to your own opinion.
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Clinical Decision Support System (Program)
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JAMA | Original Investigation | INNOVATIONS INHEALTH CARE DELIVERY

Development and Validation of a Deep Learning Algorithm
for Detection of Diabetic Retinopathy
in Retinal Fundus Photographs

Varun Gulshan, PhD; Lily Peng, MD, PhD; Marc Coram, PhD; Martin C. Stumpe, PhD; Derek Wu, BS; Arunachalam Narayanaswamy, PhD;
Subhashini Venugepalan, MS; Kasumi Widner, MS; Tom Madams, MEng; Jorge Cuadros, OD, PhD; Ramasamy Kim, OD, DNB;
Rajiv Raman, MS, DNB; Philip C. Nelson, BS; Jessica L. Mega, MD, MPH; Dale R. Webster, PhD

Figure 2. Validation Set Performance for Referable Diabetic Retinopathy

A | EyePACS-1: AUC, 99, 1%; 95% CI, 96.8%-99.3%
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Gulshan V, et al. JAMA. 2016;316(22):2402-2410.



JAMA | Original Investigation

Development and Validation of a Deep Learning System
for Diabetic Retinopathy and Related Eye Diseases Using
Retinal Images From Multiethnic Populations With Diabetes

Daniel Shu Wei Ting, MD, PhD; Carol Yim-Lui Cheung, PhD; Gilbert Lim, PhD; Gavin Siew Wei Tan, FRCSEd; Nguyen D. Quang, BEng;
Alfred Gan, MSc; Haslina Hamzah, BSc; Renata Garcia-Franco, MD; lan Yew San Yeo, FRCSEd; Shu Yen Lee, FRCSEd;

Edmund Yick Mun Wong, FRCSEd; Charumathi Sabanayagam, MD, PhD; Mani Baskaran, MD, PhD; Farah Ibrahim, MB, BCh, BAO;
MNgiap Chuan Tan, MCI, FAMS; Eric A. Finkelstein, MHA, PhD; Ecosse L. Lamoureux, PhD; lan Y. Wong, FRCOph; Neil M. Bressler, MD;
Sobha Sivaprasad, FRCOph; Rohit Varma, MD, MPH; Jost B. Jonas, MD, PhD; Ming Guang He, MD, PhD; Ching-Yu Cheng, MD, PhD;
Gemmy Chui Ming Cheung, FRCOph; Tin Aung, MD, PhD; Wynne Hsu, PhD; Mong Li Lee, PhD; Tien Yin Wong, MD, PhD

A. HEALTHY B. DISEASED

\Hemorrhages

JAMA. 2017;318(22):2211-2223. doi:10.1001/jama.2017.18152



E Deep learning system for detecting possible glaucoma
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Deep learning system for detecting referable AMD
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Key Points

Question How does a deep learning system (DLS) using artificial
intelligence compare with professional human graders in
identifying diabetic retinopathy and related eye diseases using
retinal images from multiethnic populations with diabetes?

Findings In the primary validation dataset (71896 images;
14 880 patients), the DLS had a sensitivity of 90.5% and

specificity of 91.6% for detecting referable diabetic retinopathy;
100% sensitivity and 91.1% specificity for vision-threatening
diabetic retinopathy; 96.4% sensitivity and 87.2% specificity

for possible glaucoma; and 93.2% sensitivity and 88.7%
specificity for age-related macular degeneration, compared with
professional graders.

Meaning The DLS had high sensitivity and specificity for
identifying diabetic retinopathy and related eye diseases using
retinal images from multiethnic populations with diabetes.

JAMA. 2017;318(22):2211-2223. doi:10.1001/jama.2017.18152



FDA-approved in 11/Apr/2018:; IDX-DR

Detect Diabetes Retinopathy
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Dermatologist-level classification of skin cancer
with deep neural networks

Andre Esteva'*, Brett Kuprel'*, Roberto A. Novoa??, Justin Ko, Susan M. Swetter®*, Helen M. Blau® & Sebastian Thrun®

a Carcinoma: 135 images Melanoma: 130 images Melanoma: 111 dermoscopy images
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Esteva A, et al. Nature. 2017;542(7639):115-118.



A 49-year-old patient takes a picture of a rash
on his shoulder with a smartphone app that rec-
ommends an immediate appointment with a der-
matologist. His insurance company automatically
approves the direct referral, and the app schedules
an appointment with an experienced nearby der-
matologist in 2 days. This appointment is auto-
matically cross-checked with the patient’s per-
sonal calendar. The dermatologist performs a
biopsy of the lesion, and a pathologist reviews the
computer-assisted diagnosis of stage | melanoma,
which is then excised by the dermatologist.

N Engl ] Med 2019;380:1347-58.

Hi, We will help you diagnose a skin
problem.

Note: This bot does not provide
conclusive medical advice.

e e e ek ke ke ek e

Please start with uploading a picture of
the skin where there is a problem.

Click the camera button to upload the
picture

<

What is your gender and age?

=8 ] chat with tibot here

e
J _ ace
\/ Add labels for the mole here
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Diagnosis of Idiopathic Pulmonary Fibrosis
An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline

IPF suspected™ Histopathology pattern

Indeterminate for Alternative
HRCT
=

IPF (Likelhy)*™ Indeterminate™~ Mon-IPF dx

anemanve (I m —
HRCT Criteria for UIP pattern

uUiP Probable UIP Indeterminate for UIP Alternative Diagnosis
Subpleural and basal Subpleural and basal Subpleural and basal predominant  Findings suggestive of another
predominant; distribution is predominant; ) ‘ ) diagnosis, including:
often heterogeneous* distribution is often Subtle reticulation; may have mild o ~1 foot s
heterogeneOUS GGO or distortion (“eal’ly ulP o
pattemn”) Cysts ,
Honeycombing with or without  Reticular pattern with peripheral o © Marked mosaic
peripheral traction traction bronchiectasis or CT features and/or distribution of attenuation
bronchiectasis or bronchiolectasis lung fibrosis that do not suggest ° Predominant GGO
bronchiolectasis’ _ any specific etiology (“truly ° Profuse micronodules
May have mild GGO indeterminate”) ° Centrilobular nodules
° Nodules

° Consolidation
Am J Respir Crit Care Med Vol 198, Iss 5, pp e44—e68, Sep 1, 2018



HRCT Criteria for UIP pattern

UIP Pattern (All Four Features) Possible UIP Pattern (All Three Features) Inconsistent with UIP Pattern (Any of the Seven Features)

e Subpleural, basal predominance e Subpleural, basal predominance e Upper or mid-lung predominance

e Reticular abnormality e Reticular abnormality e Peribronchovascular predominance

e Honeycombing with or without traction e Absence of features listed as inconsistent with e Extensive ground glass abnormality (extent >
bronchiectasis UIP pattern (see third column) reticular abnormality)

o Absence of features listed as inconsistent with
UIP pattern (see third column)

e Profuse micronodules (bilateral, predominantly
upper lobes)
e Discrete cysts (multiple, bilateral, away from areas
of honeycombing)
¢ Diffuse mosaic attenuation/air-trapping (bilateral,
in three or more lobes)
e Consolidation in bronchopulmonary segment(s)/lobe(s)

Definition of abbreviation: UIP = usual interstitial pneumonia.

Am J Respir Crit Care Med Vol 183. pp 788-824, 2011



Deep learning for classifying fibrotic lung disease on

@ ki ®

CrossMark

high-resolution computed tomography: a case-cohort study

Simon L F Walsh, Lucio Calandriello, Mario Silva, Nicola Sverzellati

Total (n=1157)

v

v

Training (n=929)

Validation (n=89)

Test set A (n=139)

-

-

.

210 usual interstitial pneumonia

392 possible usual interstitial pneumonia

327 inconsistent with usual interstitial
pneumonia

29 usual interstitial pneumonia

30 possible usual interstitial pneumonia

30 inconsistent with usual interstitial
pneumonia

43 usual interstitial pneumonia

49 possible usual interstitial pneumonia

47 inconsistent with usual interstitial
pneumonia

h 4

Segmentation followed by a maximum of 500 unique four-slice montages per high-resolution CT scan

v

A 4

420096 unique training montages
102 281 vsval interstitial pneumonia
186 306 possible usual interstitial
pneumonia
131509 inconsistent with usuval
interstitial pneumonia

40 490 unique validation montages
13105 usual interstitial pneumonia
13 605 possible usval interstitial
pneumonia
13780 inconsistent with usual interstitial
pneumonia

Testset A
68 093 unique test montages
22000 usual interstitial pneumonia
24 000 possible usual interstitial
pneumonia
22093 inconsistent with usual interstitial
pneumonia

Lancet Respir Med 2018; 6: 837-45




Apical 10% One image from each level selected randomly to create a unique
discarded four-slice montage

Level1 —p

Maximum of
500 unique
four-slice
montages per
high-resolution
CT scan created

Figure 2: High-resolution CT preprocessing

For each high-resolution CT, the lungs were segmented and four axial slice montages were created by randomly
selecting a slice from each lung quarter length (excluding the apical 10%). The resampling procedure was programmed
to ensure that all montages were unique. A maximum of 500 montages per high-resolution CT were created,
generating a total database of 420 096 training montages, 40 490 validation montages, and 68 093 test

montages. Lancet Respir Med 2018;
6:837-45



Algorithm
Usual Possible Inconsistent | Total
interstitial usual with usual
pneumonia | interstitial interstitial
pneumonia pneumonia
Usual | 23 ) 1 29
interstitial
neumonia
)
E Possible usual 6 10 14 30
a interstitial
= pneumonia
2,
-',:;.“ Inconsistent 6 8 77 91
with usual
interstitial
pneumonia
Total | 35 23 92 150

Figure 3: Confusion matrix showing the frequency of deep learning
algorithm predictions with respect to the majority opinion of 91 thoracic

. . Lancet Respir Med 2018;
radiologists on test set B 6: 837-45
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radiologists (not usual
interstitial pneumonia)

Algorithm's prediction (not 115 98 83 63 31 0
usual interstitial pneumonia)

Majority opinion of 29 16 10 5 2 0
radiclogists (usual interstitial
pneumonia)

Algorithm's prediction (usual 35 20 14 6 1 0

interstitial pneumonia)

Figure 4: Kaplan-Meier graphs

Survival differences between high-resolution CTs assigned a radiological diagnosis of usual interstitial pneumonia

versus not usual interstitial pneumonia by the algorithm and on the basis of the majority opinion of the thoraci Lancet Respir Med 2018;
radiologists. 6:837-45



Findings The accuracy of the algorithm on test set A was 76-4%, with 92.7% of diagnoses within one category.
The algorithm took 2-31 s to evaluate 150 four slice montages (each montage representing a single case from test
set B). The median accuracy of the thoracic radiologists on test set B was 70-7% (IQR 65-3-74-.7), and the accuracy
of the algorithm was 73-3% (93-3% were within one category), outperforming 60 (66%) of 91 thoracic radiologists.
Median interobserver agreement between each of the thoracic radiologists and the radiologist’s majority opinion was
good (kw=0.67 [IQR 0.58-0.72]). Interobserver agreement between the algorithm and the radiologist's majority
opinion was good (kw=0-69), outperforming 56 (62%) of 91 thoracic radiologists. The algorithm provided equally
prognostic discrimination between usual interstitial pneumonia and non-usual interstitial pneumonia diagnoses
(hazard ratio 2.88, 95% CI 1.79-4.61, p<0-0001) compared with the majority opinion of the thoracic radiologists
(2-74, 1-67-4-48, p<0.0001). For Fleischner Society high-resolution CT criteria for usual interstitial pneumonia,
median interobserver agreement between the radiologists was moderate (kw=0.56 [IQR 0-55-0-58]), but was good
between the algorithm and the radiologists (kw=0-64 [0-55-0-72]).

Interpretation High-resolution CT evaluation by a deep learning algorithm might provide low-cost, reproducible,
near-instantaneous classification of fibrotic lung disease with human-level accuracy. These methods could be
of benefit to centres at which thoracic imaging expertise is scarce, as well as for stratification of patients in clinical trials.

Funding None. In conclusion, we have developed a deep learning
algorithm with human-level performance for classifying
fibrotic lung disease on high-resolution CT on the basis of
criteria specified by two international idiopathic pulmonary
fibrosis guideline statements. In principle, this algorithm
could be deployed anywhere in the world for a low cost and
could provide radiological decision support to centres
where thoracic imaging expertise is unavailable. Our
results warrant further validation 1n future studies.

Lancet Respir Med 2018;
6:837-45



Al in chest imaging: CXR

Reference Application Remarks

Lo etal. (1993 Nodule detection Classifies candidates from small patches with two-layer CNN, each with 12 5 5 filters

Anavi etal, [2015) Image retrieval Combines classical features with those from pre-trained CNN for image retrieval using SVM
Bar etal. (2015) Pathology detection Features from a pre-trained CNN and low level features are used to detect various diseases
Anavi etal. [2016) Image retrieval Continuation of Anavi etal. [2013), adding age and gender as features

Bar etal, (2016) Pathology detection Continuation of Bar etal, (2015), more experiments and adding feature selection

Cicero etal, (2017) Pathology detection GoogleNet CNN detects five common abnormalities, trained and validated on a large data set
Hwang etal. (2016) Tuberculosis detection Processes entire radiographs with a pre-trained fine-tuned network with & convolution layers
Kim and Hwang (2016  Tuberculosis detection MIL framework produces heat map of suspicious regions via deconvolution

Shin etal, (2016a) Pathology detection CNN detects 17 diseases, large data set (7k images), recurrent networks produce short captions
Rajkomar etal, [(2007)  Frontallateral classification  Pre-trained CNN performs frontal lateral classification task

Yang etal. (2016¢) Bone suppression Cascade of CNNs at increasing resolution learns bone images from gradients of radiographs
Wang etal, (2016a) Nodule classification Combines classical features with CNN features from pre-trained ImageNet CNN

A survey on deep learning in medical image analysis
Medical Image Analysis, 2018
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Artificial intelligence applications in the intensive care unit

C. William Hanson Ill, MD, FCCM; Bryan E. Marshall, MD, FRCP, FRCA

Objective: To review the history and current applications of
artificial intelligence in the intensive care unit.

Data Sources: The MEDLINE database, bibliographies of se-
lected articles, and current texts on the subject.

Study Selection: The studies that were selected for review
used artificial intelligence tools for a variety of intensive care
applications, including direct patient care and retrospective da-
tabase analysis.

Data Extraction: All literature relevant to the topic was re-
viewed.

Data Synthesis: Although some of the earliest artificial intel-
ligence (Al) applications were medically oriented, Al has not been
widely accepted in medicine. Despite this, patient demographic,
clinical, and billing data are increasingly available in an electronic
format and therefore susceptible to analysis by intelligent soft-
ware, Individual Al tools are specifically suited to different tasks,
such as waveform analysis or device control.

Conclusions: The intensive care environment is particularly
suited to the implementation of Al tools because of the wealth of
available data and the inherent opportunities for increased effi-
ciency in inpatient care. A variety of new Al tools have become
available in recent years that can function as intelligent assis-
tants to clinicians, constantly monitoring electronic data streams
for important trends, or adjusting the settings of bedside devices.
The integration of these tools into the intensive care unit can be
expected to reduce costs and improve patient outcomes. (Crit
Care Med 2001; 29:427-435)

Key Worps: intensive care unit; artificial intelligence; expert
systems; computer-assisted diagnosis; computer-assisted ther-
apy; decision support techniques; neural networks; algorithms;
fuzzy logic; data display; computer simulation; clinical decision
support systems; management decision support systems

Data driven decision support tools will permit the busy clinician (physician, nurse, RT) to

function more efficiently, caring for more patients more safely in much the same way that these

same tools have been used to enhance the efficiency of business applications.

Crit Care Med 2001 Vol. 29, No. 2
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Big Data and Data Science in Critical Care

L. Nelson Sanchez-Pinto, MD, Yuan Luo, PhD,; and Matthew M. Churpek, MD, PhD

[ Big Data in the ICU ]

D e

Medications {Houtine Iaboratory]

I
Natural language [ Physiologic J

[Cliniciannotas ) [Clinician-charted

Figure 1 — Some of the major sources of big data in the ICU. The term “omics” refers to the data derived from modern molecular techniques
(eg, genomics, transcriptomics, proteomics, metabolomics, microbiomics). EHR = electronic health record.

CHEST 2018; 154(5):1239-1248
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Patients Clinical features Outcomes
| : 10 : 10 ‘ 1
Pt. 1 —— Survived
Pt. 2 —— Not survived
Pt. 3 —— Survived
LEARN
PREDICT

vt [ — °

A, Supervised learning algorithms can be used, for example, to uncover the relationship
between patient clinical features (eg, labora-tory tests and vital signs) and mortality to predict
the outcome in future cases

CHEST 2018; 154(5):1239-1248



B

Heterogeneous

population Cluster 1:
. . * High Oxygenation Index
* Low Glasgow Coma Scale

. . . * High mortality risk
o

Cluster 2:

* On inotropes

» Acute kidney injury
* High mortality risk

o0 @® cClusters:

* No comorbidities

0 Do oy =

B, Unsupervised learning algorithms can be used to uncover naturally occurring groupings or
clusters of patients based on their clinical characteristics, without targeting a specific outcome.

CHEST 2018; 154(5):1239-1248




C

Hidden Layers

Output Layer

Consolidation

Effusion

Atelectasis

indings

Densities

Structures, Lungs, Heart,
Background Bones, Fluid

C, Deep learning algorithms can be used, for example, to extract meaningful features from
imaging data (eg, chest radiograph) to represent information in an increasingly higher order of

hierarchical complexity and be able to make predictions, such as the presence of pathologic
findings

CHEST 2018; 154(5):1239-1248



The Artificial Intelligence Clinician learns optimal
treatment strategies for sepsis in intensive care

Matthieu Komorowski %%, Leo A. Celi®*4, Omar Badawi**#, Anthony C. Gordon ™™ and
A. Aldo Faisal>™3%

« MIMIC-III: 17,083 admissions (88.4% of eligible
patients with sepsis) from five separate ICUs in one
tertiary teaching hospital

* eRl database:79,073 admissions (73.6% of eligible
patients with sepsis) from 128 different hospitals

* The total volume of intravenous fluids and maximum
dose of vasopressors administered over each 4-h
period defined the medical treatments of interest.

* The model aims at optimizing patient mortality, so a
reward was associated to survival and a penalty to
death.

Komorowski eta |, Nature Medicine, 2018



Community Code (GitHub) ©

* an openly available critical care database

 MIT Lab for Computational Physiology,
comprising deidentified health data associated
with ~40,000 critical care patients.

 demographics, vital signs, laboratory tests,
medications, and more.

* MIMIC-III

e 58,000 hospital admissions for 38,645 adults
and 7,875 neonates.

* The data spans June 2001 - October 2012

https://mimic.physionet.org/



Table 1| Description of the datasets

MIMIC-1Il eRl
Unique ICUs (n) 5 128
Unigue ICL admissions {m)} 17,083 79073
Characteristics of hospitals, per number of ICU) admissions Teaching tertiary hospital Monteaching: 37,146 (47.0%)

Teaching: 29,388 (37.2%)
Unknown: 12,539 (15.9%)

Age, years (mean (s.d.)) &4.4 (16.9) 65.0 (16.7)
Male gender (n (%)) 9,604 (56.29%) 40,949 (51.8%)
Premorbid status (n (%))

Hypertension G 384 (54.9%) 43 365 (54.8%)
Diabetes 4902 (28.7%) 25,290 (32.0%)
CHF 5,206 (30.5%) 15,023 (19.0%)
Cancer 1,803 (10.5%) 1,807 (14.9%)
COPD or RLD 4 248 (28.7%) 18 406 (23.3%)
CKD 3,087(18.1%) 14,553 (18.4%)
Primary 1CD-9 diagnosis (n (26))

Sepsis, including pneumonia 5824 (34.1%) 41,396 (52.3%)
Cardiovascular 5,270 (30.8%) 1,221 (14.2%)
Respiratory 1,798 (10.5%) 9127 (11.5%)
Meurological 1,590 (9.3%) 7127 (9.0%)
Renal 429 (2.5%) 1,454 (1.8%)
Others 2172 (12.79%) 8,747 (M%)
Initial OASIS (mean (s.d.)) 335(8.8) 3480124)
Initial SOFA (mean (s.d.}) 7.2(3.2) 6.4 (3.5)
Procedures during the 72 h of data collection:

Mechanical ventilation (m (%)} 9362 (54.8%) 39115 (49.5%)
Vasopressors (n (%)) 6,023 (35.3%) 23877 (30.2%)
Renal replacement therapy (m (%)) 1488 (8.7%) 6,071 (7.7%)
Length of stay, days (median, (IQR)) 31(1.8-7) 29(17-5.6)
ICU mortality 7.4% 9.8%

Hospital mortality 1.3% 16.4%

S0-d mortality 18.9% Mot available

CHF, congestive heart fallure; CKD, chronic kidney dissase; COPD, chronic obstructive pulmonary disaass; IC0-9, International Classification of Diseases version % IQF, interquartile rmnge; OASIS, Crefard
Acute Saverity of lliness Scora; BLD, restrictive lung diseasa; S0FA, sequential organ fallure assessment.

Komorowski eta |, Nature Medicine, 2018



Data flow of the Al clinician

Patient states Reinforcement
learning

Development dataset:
80% of MIMIC-III

(s8]

O

A

& —
& -
S

S —2
Patient input data

1. Evaluation of
clinician policy

DEMNON @

i i Validation
(time series of 48 Dosage actions ot
featu I'QS) . ) ) ‘ Dose of vasopressor o f-
Discretization 20% 0

2. Optimal MIMIC-III
E B © policy estimation
Medication doses < 7 10
5 L]tz 18 14 e Selection of Testing of
Patient outcome S 7 e best model best model
21|22 |23

Reward or penalty

Fig. 1| Data flow of the Al Clinician. Eighty percent of the MIMIC-IIl dataset was used to define the elements of the MDP. Time series of patient data were
clustered into finite states. The dose of intravenous (i.v.) fluids and vasopressors were discretized into 25 possible actions. Patient survival at 90 d after ICU
admission defined reward. Reinforcement learning was used to estimate optimal treatment strategies—the Al policy. The remaining 20% of MIMIC-1I| data
was used to identify the best model among 500 candidates, which was then tested on an independent dataset from the eRI database.

Komorowski eta |, Nature Medicine, 2018
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biootstrappingn the trining dta with 2,000 resamplings.

Komorowski eta |, Nature Medicine, 2018
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Fig. 3 | Comparison of clinician and Al policies in eRl and average dose excess received per patient of both drugs in eRl with corresponding mortality. a,
Distribution of the estimated value of the clinician and Al policies in the selected model, built by bootstrapping with 2,000 resamplings. b,c, Visualization
of the clinician and Al policies. All actions were aggregated over all time steps for the five dose bins of both medications. On average, patients were
administered more intravenous fluid (b) and less vasopressor (¢) medications than recommended by the Al policy. Vasopressor dosage is shown in
ng/kg/min of norepinephrine equivalent, and intravenous fluid dosage is shown in mL/4 h. d, The dose excess, referring to the difference between the
given and suggested dose averaged over all time points per patient, for intravenous fluids (left) and vasopressor (right). The figure was generated by
bootstrapping with 2,000 resamplings. The shaded area represents the s.e.m. In both plots, the smallest dose difference was associated with the best
survival rates (vertical dotted line). The further away the dose received was from the suggested dose, the worse the outcome.

Komorowski eta |, Nature Medicine, 2018
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Summary

Administering more or less of either treatment
than the Al policy was associated with increasing
mortality rates in a dose-dependent fashion

Avoiding targeting short-term resuscitation goals
and instead following trajectories toward longer-
term survival

Aim: real-time Al clinician

Require prospective evaluation using real-time
data and decision-making in clinical trials and also
testing in different healthcare settings

Komorowski eta |, Nature Medicine, 2018
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Self-driving Uber kills Arizona woman in 2 Dead in 5-Car Crash in Bartlett
first fatal crash involving pedestrian By Christan Far

Published at 9:25 PM CDT on Sep 25, 2018 | Updated at 10:22 PM CDT on Sep 25, 2018

0 O

Tempe police said car was in autonomous mode at the time of the

crash and that the vehicle hit a woman who later died at a hospital o :
::" Cap(ureEdNews

\ g

Two people died after five vehicles collided in the northwest suburbs Tuesday morning. NBC 5's
Christian Farr reports
(Published Tuesday, Sept. 25, 2018)










Foodie



Association vs. Casualization
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HAI: Human-centered Al
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El2-e ERHELALIAE

RAHERA

(Better-informed Patients )

RRHBRE

(Better-informed Physicians )

AANERREEAS

(Better-informed Administrators)

Al L

(Enhanced Patient-Physician Interactions)

Al » il - IR R &

(Detect, Predict and Prevent Adverse Events)




FDA-approved: AIDOC

 Automatic detection of acute brain
hemorrhage

 PACS integration
 FDA approval 15/0CT/2018

"Aidoc receives FDA approval
to flag acute intracranial

hemorrhage (ICH) cases in
head CTs"

aidocC




Artificial Intelligence (Al)

e Electric Medical Record (EMR)
* Natural Language Processing
* Deep learning; Machine learning



MINI SYMPOSIUM

C15  CRITICAL CARE: BIG DATA AND ARTIFICIAL
INTELLIGENCE IN CRITICAL ILLNESS

9:15a.m.-11:15a.m. SAN DIEGO CONVENTION CENTER

Room 29 A-D (Upper Level)

Chairing: M.N. Gong, MS, MD, Bronx, NY
M.W. Sjeding, MD, Ann Arbor, M
C.R. Cooke, MD, Ann Arbor, MI

Oral Presentations

9:15 What Comes First in Sepsis- Systemic Inflammatory Response
Syndrome (SIRS), the Sequential Organ Failure Assessment
(SOFA), or the Quick Sepsis Related Organ Failure
Assessment (qSOFA)?/P.A. Prasad, M.C. Fang, N. Van
Groningen, Y. Abe-Jones, C.S. Calfee, M.A. Matthay, K.N.
Kangelaris, San Francisco, CA, p.A4441

9:30 Feasibility of Sepsis Phenotyping Using Electronic Health
Record Data During Initial Emergency Department Care/C.W.
Seymour, J. Kennedy, S. Wang, Z. Xu, C.-C.H. Chang, Q. Mi, Y.
Vodovotz, G. Clermont, S. Visweswaran, J.C. Weiss, G. Cooper, H
Gomez, J.A. Kellum, D.C. Angus, Pittsburgh, PA, p.A4442

9:45 EMR Clinical Signatures with Unsupervised Topic Modeling in
Early Infection and Sepsis/A. Fohner, J. Chen, J. Greene, P.
Kipnis, G. Escobar, V. Liu, Oakland, CA, p.A4443

10:00 Less Is More: Detecting Clinical Deterioration in the Hospital
with Machine Learning Using Only Age, Heart Rate and
Respiratory Rate/D.P. Edelson, K. Carey, C.J. Winslow, M.M.
Churpek, Chicago, IL, p.A4444

10:15 From Pictures to Prediction: Combining Data Visualization
with Deep Learning to Predict Clinical Deterioration/A.
Mayampurath, K. Carey, L.-R. Venable, D. Edelson, M.M. Churpek,
Chicago, IL, p.A4445

ATS 2018/5

10:30

Natural Language Processing and Machine Learning for
Identification of Acute Respiratory Distress Syndrome/A.
Qakey, D. Dligach, P. Yang, P. Formanek, S. Zelisko, R. Price, C.
Joyce, R. Cooper, M. Afshar, Chicago, IL, p.A4446

11:00

Predicting Intensive Care Unit Readmission with Machine
Learning Using Electronic Health Record Data/J.C. Rojas, K.A.
Carey, D.P. Edelson, L.R. Venable, M.D. Howell, M.M. Churpek,
Chicago, IL, p.A4447

Prediction for Hypotension Episode with Multigranular Data in
the Intensive Care Unit/J.H. Yoon, V. Jeanselme, Y. Chen, A.
Dubrawski, M. Hravnak, M. Pinsky, G. Clermont, Pittsburgh, PA,
p.A4448




Terms (1)

TABLE 1 | Definitions of Common Terms in Data Science

Term

Definition

Big data

Data science

Data mining

Domain expertise

Machine learning

Features

Outcomes

Digital data that are generated in high volume and high variety and that accumulate at high
velocity, resulting in datasets too large for traditional data-processing systems

The set of fundamental principles that support and guide the principled extraction of information
and knowledge from data

The extraction of knowledge from data via machine learning algorithms that incorporate data
science principles

The understanding of real-world problems in a given domain (eg, critical care medicine) that helps
frame and contextualize the application of data science to solve these problems

The field of study that focuses on how computers learn from data and the development of
algorithms that make this learning possible

The data elements, also known as independent variables, used to train a model. Features can be
simple transformations of the raw data (eg, average heart rate in the last 24 h) or complex
transformation such as the ones performed by neural networks (see Table 2)

The data elements, also known as dependent variables, represent the target for training in a
supervised learning model. Outcomes can be categorical (eg, yes/no) or continuous (eg, length
of hospital stay). Categorical binary outcomes are the most common in medicine (eg, died or
alive by 28 days). Binary outcomes are typically represented as a Boolean logic (ie, true/false or
1/0) but can also be represented using fuzzy logic (ie, a range of probabilities, or degrees of
truth, between 0 and 1)

CHEST 2018; 154(5):1239-1248



Supervised learning

Unsupervised learning

Model training

Model validation

Predictive model

Prognostic model

Terms (2)

Algorithms that are used to uncover the relationship between a set of features and one or more
known outcomes

Algorithms that are used to uncover naturally occurring patterns or groupings in the data, without
targeting a specific outcome

The process through which machine learning algorithms develop a model of the data by learning
the relationships between features and, in supervised learning, between features and
outcomes. This is also referred to as model derivation or data fitting

The process of measuring how well a model fits new, independent data. For example, evaluating
the performance of a supervised model at predicting an outcome in new data. This approach is
also referred to as model testing.

A model generally trained to predict the likelihood of a condition, event, or response. The US Food
and Drug Administration specifically considers predictive strategies as those geared toward
identifying groups of patients more likely to respond to an intervention

A model specifically trained to predict the likelihood of a condition-related endpoint or outcome
such as mortality. In general, the goal is to estimate a prognosis given a set of baseline features,
regardless of what ultimately leads to the outcome

CHEST 2018; 154(5):1239-1248



Overfitting

Digitization

Digitalization

Data curation

Structured data

Unstructured data

Terms (3)

The phenomenon that occurs when an algorithm learns from idiosyncrasies in the training data,
usually referred to as noise. Noisy data are data that are randomly present in the training
dataset but do not represent the generalizable truth (usually referred to as signal) that explains
the relationships between the features and the outcomes. Overfitting will generally lead to poor
performance of the model in an independent validation dataset

The conversion of something analog or physical (eg, paper documents, printed images) into a
digital format (ie, bits or 1s and 0s)

The wide adoption of digital technologies by an organization to leverage their digitized data with
the goal of improving operations and performance. The adoption of electronic health records
and other digital technologies (eg, picture archiving and communication systems for medical
images, pharmacy management systems, billing systems) are examples of digitalization in
health care

The process of integrating data from different sources, structuring it, authenticating it, and
annotating it to ensure its quality, add value, and facilitate its use and reuse

Data (usually discrete or numeric) that are easy to search, summarize, sort, and quantify.
Examples include vital signs (eg, heart rate) or laboratory test results (eg, CBC)

Data that do not conform to a prespecified structure, such as a written narrative, images, video, or
audio. Unstructured data are generally harder to search, sort, and quantify. Examples include
clinician notes, pathology slides, and radiology images

CHEST 2018; 154(5):1239-1248



Algorithms in Data Science

TABLE 2 | Examples of Algorithms Use in Data Science

Algorithm Class

Examples

Description

Classic regression

Regularized
regression

Tree-based

Linear regression,
logistic regression

Lasso, ridge
regression, elastic
net

Classification and
regression trees,
random forest,
gradient boosted
trees

Linear regression is a supervised learning algorithm that models the

relationship between one or more features and a continuous outcome
by fitting a regression line that minimizes the sum of all the residuals,
which are the distances between each feature in the training data and
the line being fitted to model them. Logistic regression is a
generalization of the linear model that uses the logistic function to
estimate the probability of a binary outcome. To do this, the fitted
sigmoid-shaped curve of the logistic function maps the feature values
into a probability between 0 and 1

An extension of the classic regression algorithms in which a penalty is

imposed to the fitted model to reduce its complexity and decrease the
risk of overfitting (see Table 1).

A class of supervised learning algorithm based on decision trees.

Decision trees are a sequence of “if-then-else” splits that are derived
by iteratively separating the data into groups based on the
relationship of the features with the outcome. Random forest and
gradient boosted trees are example of ensemble tree models.
Ensemble models combine the output of many trained models to
estimate an outcome

CHEST 2018; 154(5):1239-1248



Support vector
machines

K-nearest neighbor

Bayesian

Neural network

Dimensionality
reduction
algorithms

Latent class analysis

Cluster analysis

Linear, polynomial,
radial basis kernel

K-nearest neighbor

Naive Bayes, Bayesian
network

Artificial neural
network, deep
neural network

Principal component
analysis, linear
discriminant
analysis

Latent class analysis

K-means, hierarchical
cluster analysis

A class of supervised learning algorithms that represents the data in a
multidimensional feature space and then fits a “hyperplane” that best
separates the data based on the outcomes of interest

A type of supervised learning algorithm that represents data in
multidimensional feature space and uses local information about
observations closest to a new example to predict the outcome for that
example

A class of supervised learning algorithms that use Bayes’ theorem of
conditional probability, which is the probability that something will
happen given that something else has already occurred. In general,
Bayesian algorithms work by iteratively updating the probability of an
outcome (or posterior belief) given new data

A class of nonlinear algorithms built using layers of nodes that extract
features from the data and perform combinations that best represent
the underlying structure, usually to predict an outcome. Neural
networks can be shallow (eg, a perceptron with two layers) or deep
(multiple layers), which form the basis for the field of deep learning

A class of unsupervised learning algorithms that exploit the inherent
structure in the data to describe data using less information. Principal
components, for example, summarize a large set of correlated
features into a smaller number of representative features

A type of unsupervised learning algorithm that identifies unseen
subgroups, or latent classes, in the data. Class membership is
unknown for each example so the probability of class membership is
indirectly estimated by measuring the patterns in the data

A class of unsupervised learning algorithm that uses the inherent
structures in the data to best organize the data into subgroups of
maximum commonality based on some distance measure between
features

CHEST 2018; 154(5):1239-1248



* Al In Sepsis
* Al in chest imaging
* Al in ARDS imaging



s B 4 WiEER T ? %It riE (multi-
class classification )

o {EHIE IR (anomaly detection )
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* Al in Sepsis
* Al in chest imaging
* Al in ARDS imaging
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Al in chest imaging: Lung nodules

e atraining data set :42092 chest radiographs

(33467 normal and 8625 nodule CXR) to optimize network
weights

Semisupervised learning manner by using all of the image-

level labels (normal or nodule), but only part of the pixel-
level annotations in the training data set: 37.2% (3213 of
8625) of nodule

* A deep convolutional neural network with 25 layers and
eight residual connections

* Brightness, contrast, and image size on input chest
radiographs were randomly adjusted to make DLAD
irrelevant to the variations

Nam et al, Radiology 2



Al in chest imaging: Lung nodules

* atuning data set: 600 CXR

(300 normal and 300 nodule CXR) to optimize
hyperparameters

e an internal validation data set: 600 CXR

(300 normal and 300 nodule CXR)

* Four independent data sets for external
validation

Nam et al, Radiology 2



Al in chest imaging: Lung nodules

University of California

Seoul National National Cancer San Francisco Medicl @ 10 .
Characteristic University Hospital ~ Boramae Hospital Center Center g 09 L * -
Patient information g / - &
No. of chest radiographs 181 182 181 149 'E 0.8 e REEErzis e e
No, of normal radiographs 62 59 70 60 i 0.7 / f!'"’
No. of nodule chest radiographs 119 123 11 89 5 ' /
Patients with nodules 119 123 11 89 E 06— ;.r
No. of men 2 89 52 54 E 05 :‘
Lliooo v A 2 P v | +ROC-AUC * JAFROC-FOM
Mean age* 515116 7.2+ 11.2 63098 611275 E 0.4 a
No. of healthy patiens 62 59 70 60 E H
No. of men 7 2% i8 30 = 03 7
No. of women 3 3 2 30 £ ot
Mean age’ 630+ 120 53,6 105 630498 92+ 165 a
Nodule information O 0.1
Total no. of nodules 143 139 115 104 0
No. of nodules per chest radiograph 1 10 20 30 40 50 &0 70 80 a0 100
One nodule 99 109 107 77 Proportion of Training Set Data Used in the Algorithm Development (%)
Two nodules 16 12 g 9
Three nodules 4 2 0 3
No. of nodules according to size
=1.0¢m 18(12.6) 42 9) 8(7.0) 6(5.8)
L1-1.5cm 200(14.0) 11(7.9 26(22.6) 13(1'J 5)
1.6-2.0 em 25(17.5) 17(122] 20(17.4) 17 (16.3)
2.1-3.0cm 311(21.7) 33(23.7) 39(51.3) 21(20.2)
=30cm 49 (34.3) 74 (53.2) 2(L7) 47 (49, 2)
Overlapped or masked by heart 11(7.7) 13 (9.4) 4(3.5) 1 (1.0
Overlapped or masked by diaphragm 9 (6.3) 15 (10.8) 3(2.6) 329
Overlapped or masked by hilar vessels 21 (14.7) 25 (18.0) 1(0.9) 14 (13. ‘J)
Overlapped or masked by clavicle/ 26(18.2) 21(15.1) 9(7.8) 8(7.7)

first rib




Table 3: Patient Classification and Nodule Detection at the Observer Performance Test

DLAD versus Test 1 Test 1 versus Test 2 (P
Test 1 (P Value) Test 2 Value)
Nodule
Radingmph Nodule Radiugraph Detection
Classification  Detection Radiograph ~ Nodule  Classification (JAFROC Radiograph ~ Nodule
Observer (AUROC)  (JAFROC FOM) Classification Detection (AUROC)  FOM)  Classification  Detection
Nonradiology
physicians
Observer 1 0.77 0.716 <001 <.001 0.91 0.853 <001 <,001
Observer 2 0.78 0.657 <.001 <001 090 0.846 <.001 <001
Observer 3 (.80 0,700 <001 <001 (.88 0,783 <001 <001
Group 0.691 <.001* 0.828 <.001*
Radiology residents
Observer 4 0.78 0.767 <.001 <001 0.80 0.785 02 03
Observer 5 0.86 0.772 001 <.001 0.91 0.837 .02 <001
Observer 6 0.86 0.789 05 002 0.86 0.799 .08 34
Observer 7 (.84 0.807 01 003 0.91 0,843 003 02
Observer 8 0.87 0.797 10 003 0.90 0.845 03 001
Observer 9 (.90 0.847 52 12 (.92 0,867 04 03
Group 0.790 <<.001* 0.867 <.001*
Board-certified
radiologists
Observer 10 0.87 0.836 05 01 0.90 0.865 004 002
Observer 11 0.83 0.804 <001 <001 0.84 0.817 .03 4
Observer 12 (.88 0.817 A8 005 0.91 0.841 1 01
Observer 13 0.91 0.824 =99 02 0.92 0.836 Sl 24
Observer 14 0.88 0.834 14 03 0.88 0.840 87 23
Group 0.821 02 0.840 01
Thoracic radio lngists
Observer 15 0.94 0.836 15 21 0.96 0.878 08 03
Observer 16 0.92 0.854 A0 17 0.93 0.872 34 02
Observer 17 0.86 0.820 02 01 0.88 0.838 14 A2
Observer 18 0.84 0.800 <001 <001 0.87 0.827 02 02
Group 0.833 08* 0.854 <001

Nam et al, Radiology



Figure 4




* Al in Sepsis
* Al in chest imaging
* Al in ARDS imaging



Acute onset over 1 week or less

Bilateral opacities consistent with pulmonary edema
must be present and may be detected on CT or chest
radiograph

PF ratio <300mmHg with a minimum of 5 cmH20 PEEP
(or CPAP)

“must not be fully explained by cardiac failure or fluid
overload,” in the physician’s best estimation using
available information — an “objective assessment” (e.g.
echocardiogram) should be performed in most cases if
there is no clear cause such as trauma or sepsis.



ARDS Pa02/Fi02 Mortality**
Severity *

Mild 200 - 300 27%
Moderate 100 - 200 32%
Severe <100 45%

*on PEEP 5+; **observed in cohort
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Warren MA, et al. Thore



GREAT MOMENTS IN A.l. (1)

T 8 &

First recorded usage of the Stanford Artificial MIT develops ELIZA Stanford researchers led by Ed
term “Artificial Intelligence,” Intelligence Lab natural language Feigenbaum develop “Dendral.”
by John McCarthy (SAIL) founded processing program the first "expert system”

—wra nda xida

Ay 4
Hans Moravec’s Stanford Cart Stanford Research Institute Backpropagation, the most

successfully crosses a chair-filled (SRI) creates “"Shakey.” the important algorithm in
room without human intervention first robot to embody A.l. machine learning. is proposed




GREAT MOMENTS IN A.l. (2)

A bt/ ||i A

L]
IBM researchers introduce Tim Berners-Lee IBM's Deep Blue beats Stanford professor
statistical approach to puts first website world champion Garry Kenneth Salisbury shares
machine learning online Kasparov in chess patent for robotic surgery

o . -t —

Siri becomes ImageNet goes live with 15 Stanford professor Sebastian Thrun, along with Stanford A.l.
an app in million images: Stanford’s Lab. develops first autonomous vehicle to complete 132-mile
Apple i0S Fei-Fei Li is the lead inventor course in Mojave Desert, winning DARPA Grand Challenge

=
g@ -|||i||-

IBM Watson Google researchers Jeff Dean and Amazon DeepMind’'s AlphaGo

supercomputer Andrew Ng train giant neural network introduces beats world champion
wins Jeopardy! of 16,000 computer processors Alexa and Echo Lee Sedol at Go




A.l. STARTUPS GLOBALLY TOP A.l. STARTUP CITIES IN THE U.S.

Canada United

131 Kingdom
245
:?"* %
; China
States w 383
1.393 -

Source Asgard CB Insights

Source  Asgard CB insights

+$15.7 Trillion $9.3 Billion
Amount A.l. is estimated

Amount startups raised from
to add to the global economy by 2030

venture capital firms in the U.S. in 2018

Beures Fttpss v garinaroom end newsroam; press-reeases M 19-01 -

1 -gariner-survey -shows-3T-pertent-of-organizations- have Source

pers Report



A.l’S INCREASING POPULARITY

Mentions of Mentions of Tech Terms on

A.l.in U.S. Congress Public Company Investor Calls
“Artificial

100 1200 Intelligence"

“Machine

Learning”
50 600
“Big Datan
“Cloud”
0 0
2007 2009 2011 2013 2015 2017 2007 2009 2011 2013 2015 2017

Source Pratile & U.S. Congressional Record Website




A.l. RESEARCH AND EDUCATION

The number of academic
papers published on the
subject of A.l. has
increased by more than
8x since 1996

Source AL index

Enrollment in
introductory AL
college courses
increased 500% from
2012 to 2017

+900x

2012

212

2017



A.l. BREAKTHROUGHS AT STANFORD

Stanley, the self-driving !

car developed at SAIL,

won DARPA's 2005 _
AL

Grand Challenge
ImageNet changed the
- Members of the course of machine
A Stanford A.l. Lab have learning/A.l. and
v v e gone on to earn ACM ushered in the age of
Teeww : deep learnin
o & @ Turing Awards P 9

The first super computer for
A.l. in medicine was created
by and Stanford School of
Medicine

Shakey. the first of its
kind. led the way for
autonomous robots

Stanford CoreNLP. O O OceanOne. an underwater
released in 2010, is the humanoid robot with haptic
leading open source ﬂ\ feedback. can explore the
natural language ocean in high fidelity
processing toolkit



A.l. COURSES AT STANFORD

Research topics include
computer vision. natural
language processing,

A.l. courses  advanced robotics. and
taught in 2018 computational genomics

MOST POPULAR
A.|.-RELATED COURSE

CS 221: Artificial
Intelligence, Principles
and Techniques



Methods of machine learning
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Comparison of machine learning
models for the prediction of
mortality of patients with
unplanned extubation in intensive

. Meng Hsuen Hsieh', Meng Ju Hsieh?, Chin-Ming Chen
care UNITS chien-Ming Chao® & Chih-Cheng Lai?

%% Chia-Chang Hsieh?,

Receiver Operating Characteristic of Prediction Models

1.0 e
. Receiver Operating Characteristic of Control Predictors : S L s " H”H
L 0.8 e
0.5 - , ) I
: s r i
B e e 2 o0& s -
x 0.6 P, 0, r epe . #
/S ?f ° f e Artificial netral networks (ANN)
EM | z H Logistic'regression models (LRM)
ICI:-: ' i o : __.-"
- g 07 Ranndom forest models (RF)
.". e = 4 ,.-"‘ .
oad ST : ~“Support vector machines (SVM])
A ‘,-' — APACHE Il {(AUC = 0,779) '
£ —— T|S5 [AUC = 0,675) 024 RF (AUC = 0.910)
{"i#" GCS (AUC = 05771 fig LR [-E'.U[ = D.EEIRJ
0.0 4 . : : : i e ANN {AUC = 0,846)
0.0 0.2 0.4 0.6 0.8 L ; :
False Positive Rate o — WM AT 0,843)
0.0 = T T . T
Figure 1. ROC curve of control variables. 0.0 0.2 Fillia — H'::fﬂ o8 1.0
Figure 2. ROC curve of ANN, LR, RE and 5§VM models.

| (2018)8:17116



BN EBERBENRFA  RERERA - EEEEHk
72 TRERp IS » RRBSHEL > MEHSEUT
A > BFHHEIA S ERHR RS M T SRS E
A o

B REEFRIZARA - EFMENERERESR
E2i& » SEIREARFERIZBERRF > AR
RUEME - EEMFF © IRIFERF EARBIESEHRM
EAMIEEEE » BRI E RS HEE » PERIRE
[RICHIB RN ERIE S -

BT HEEEENEH  ERGRELNRET B
S MBS HBEEEE - EARR L EEnE
$RNREEE > EE RO EERRERAR
Ao VB EREREARKER - B2
B -

BIREERRAANER > RESEAHAERES
SETREE > srMNERZEBEEENERZ
L BIENRERSTELEREITFRNERRM

KEIHEEZ dEaT ot H IS AN 7 hoh T aa sy H A



