

Update of immunotherapy in Lung Cancer

何肇基醫師 臺大醫院

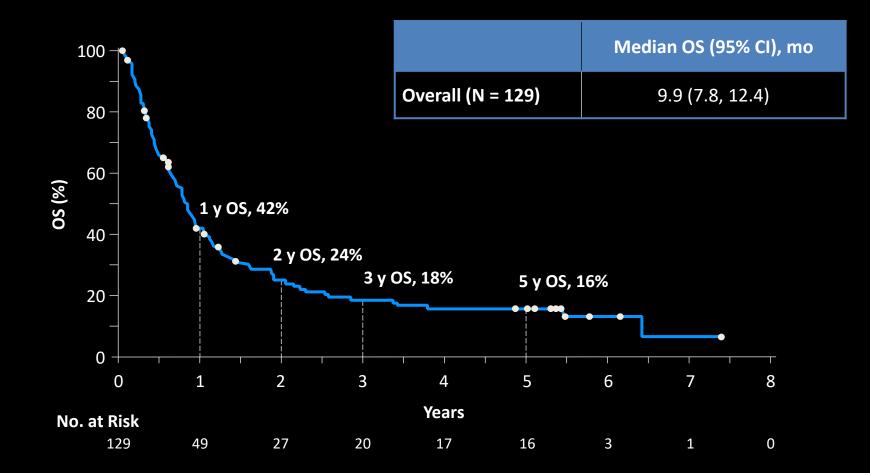
Disclosure

- Grants: AstraZeneca (#ISSIRES0105)
- Honorarium for speech or participated in compensated advisory board: Boehringer Ingelheim, Eli Lilly, Roche/Genentech/Chugai, MSD, Pfizer, Novartis, BMS and Ono pharmaceutical.

Potential IO treatment approaches for patients with different PD-L1 expression

			Adenocarcinoma, large cell, NSCLC NOS			Squamous			
Combination Type	Trial	Regimen	≥ 50%	1-49%	< 1%		≥ 50%	1-49%	< 1%
	IMpower110	Atezolizumab							
	Keynote 024 Keynote 042	Pembrolizumab	\checkmark	0				0	
CIT + CIT	СМ-227	Nivo+lpi	0	0	0		0	0	
CIT + Chemo	IMpower130	Atezo + carbo + nab-pac	V	\checkmark					
	KN-189	Pembro+carbo/Cis+Pem							
	KN-407	Pembro+Carbo+(Nab)- pac		•	•		\mathbf{A}		
CIT+ anti-VEGF+ Chemo	IMpower150	Atezo+carbo+pac+beva	×	×	× .				
CIT + CIT + Chemo		Nivo+lpi+pem+Carbo/cis	~	\checkmark					
	CM-9LA	Nivo+lpi+pac+carbo					\checkmark	\checkmark	

O Useful in certain circumstances


Recommend

NCCN guideline v1 2021

Clinical Trial Endpoints

- Overall Survival (OS): Gold standard in oncology clinical trials esp. in immunotherapy
- Progression-Free Survival (PFS)
- Overall Response Rate (ORR)
- Duration of Response (DoR): The length of time that a tumor continues to response to a drug without the cancer growing or spreading

Phase 1 Nivolumab in Advanced NSCLC (CA209-003): Long tail (Long DoR)

^aThere were 3 deaths between 3 and 5 years, all due to disease progression; 1 surviving patient was censored for OS prior to 5 years (OS: 58.2+ months)

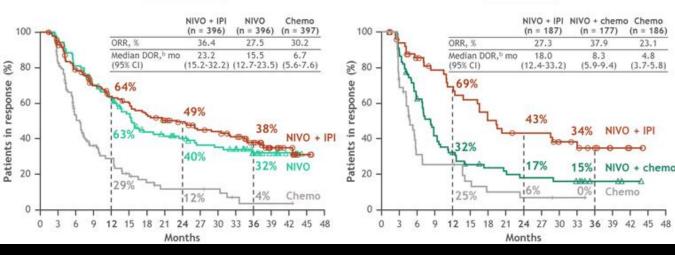
DoR is longer in IO, IO + IO but not in IO + Chemo

		EMPOWER- Lung 1	KN-189 Carbo/Pem/ Pembro			227 part-1	Checkmate 227 part-1 Nivo/Ipi	Checkmate 9LA Nivo/Ipi/Ch emo
Ν	305	710	410	278	356	793	373	719
PD-L1	≥ 50%	≥ 50%	Any	Any	Any	≥ 1%	<1%	Any
mDOR	29.1 vs 6.3	21.0 vs 6.0	11.2 vs. 7.8	7.7 vs. 4.8	10.8 vs. 6.5	23.2 vs. 6.2	18.0 vs. 4.8	11.5 vs. 5.6

KeyNote 024

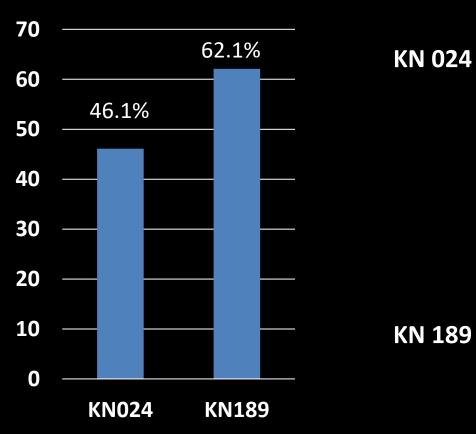
	Pembrolizumab N = 154	Chemotherapy N = 151
Objective response, n (%)	71 (46.1)	47 (31.1)
Best objective response, n (%)		
Complete response	7 (4.5)	0
Partial response	64 (41.6)	47 (31.1)
Stable disease	37 (24.0)	60 (39.7)
Progressive disease	35 (22.7)	25 (16.6)
Not evaluable	0	1 (0.7)
No assessment	11 (7.1)	18 (11.9)
Time to response, median (range), M	2.1 (1.4–14.6)	2.1 (1.1–12.2)
DOR, median (range), mo	29.1 (2.2–60.8+)	6.3 (3.1–52.4)

Checkmate 227 PD-L1 ≥ 1%

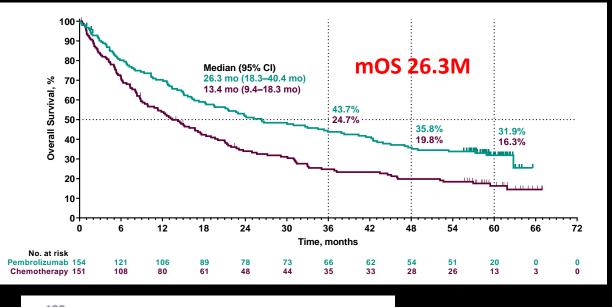

PD-L1 < 1%

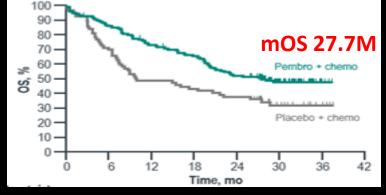
(n = 186)

23.1


4.8

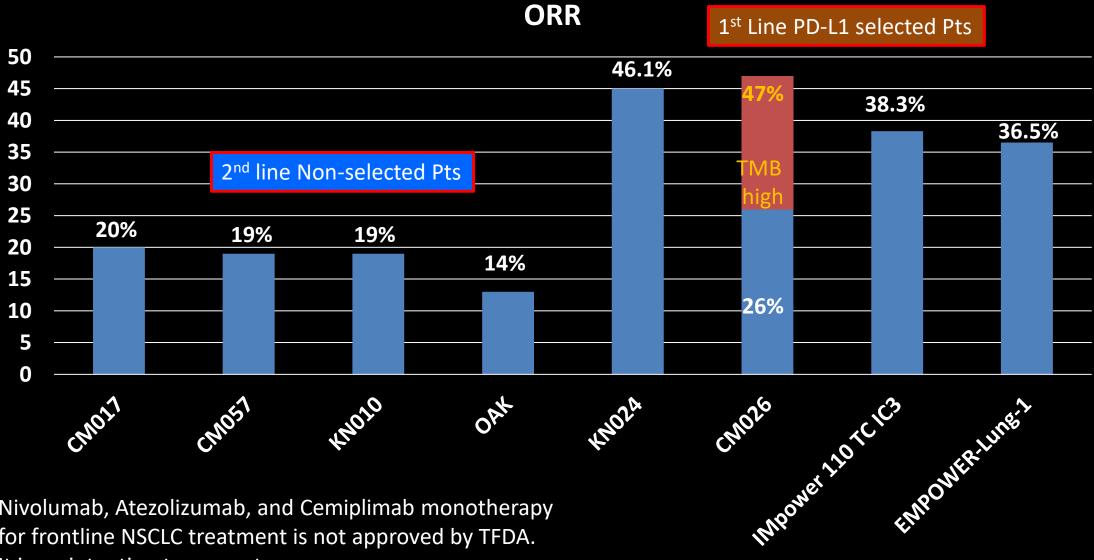
(3.7 - 5.8)




IO vs. IO + Chemo in PD-L1 ≥ 50%: Different ORR but similar OS

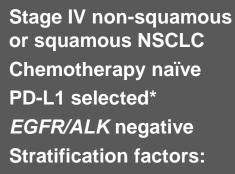
ORR

It is no intention to promote.

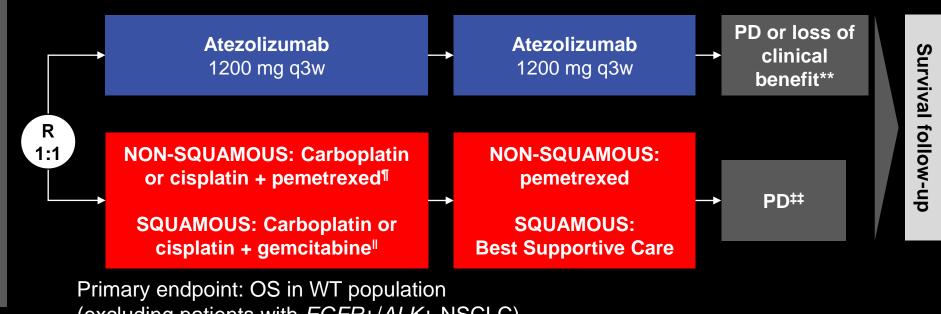

Longer OS: Contribution by IO DoR?

Brahmer, J et al. KN-024 Draft. ESMO 2020 Rodríguez-Abreu KN189 ASCO 2020

In PD-L1 \geq 50% IO Plus Chemo = IO followed by Chemo


Additive effect 1 + 1 = 2

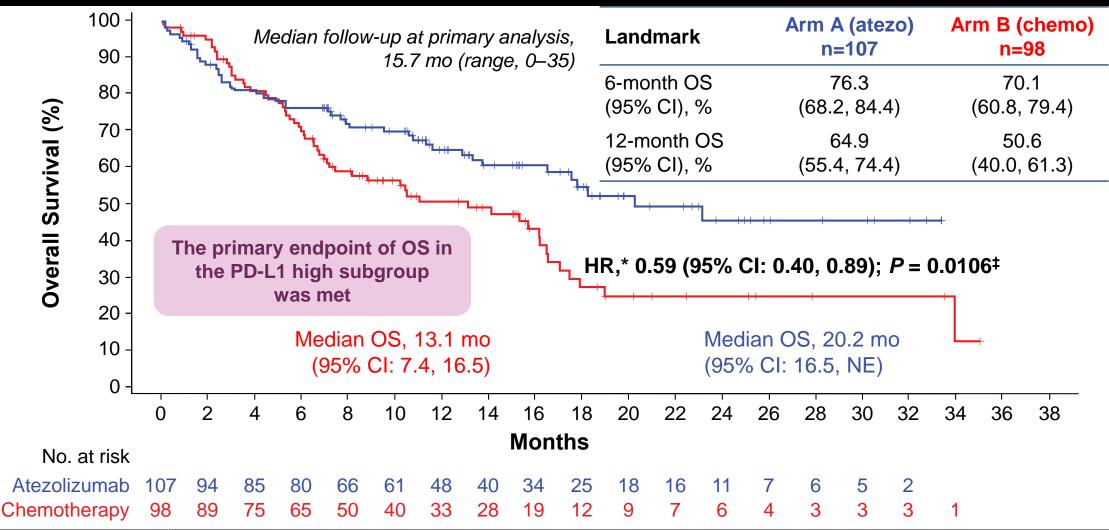
ICI monotherapy ORR



Nivolumab, Atezolizumab, and Cemiplimab monotherapy for frontline NSCLC treatment is not approved by TFDA. It is no intention to promote.

IMpower110: a randomised, phase III, multicentre study

- Sex
- ECOG PS
- Histology
- PD-L1 IHC expression[‡] N=572[§]


(excluding patients with *EGFR*+/*ALK*+ NSCLC) Key secondary endpoints: investigator-assessed

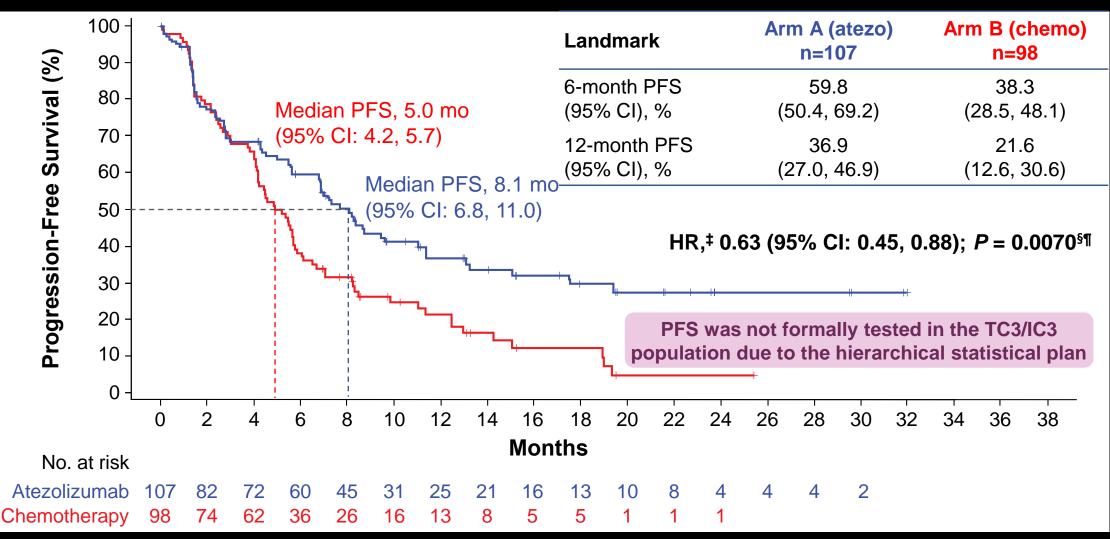
PFS, ORR and DOR (per RECIST version 1.1)

*PD-L1 positive defined as TC1/2/3 or IC1/2/3 (PD-L1 expression ≥1% on TC or IC), with tumour PD-L1 expression determined by IHC assay (VENTANA SP142 IHC assay) performed by a central laboratory; [‡]TC1/2/3 and any IC vs TC0 and IC1/2/3; [§]554 patients in the WT population; [¶]Cisplatin 75 mg/m² or carboplatin area under the curve (AUC) 6 + pemetrexed 500 mg/m² IV q3w; [∥]Cisplatin 75 mg/m² + gemcitabine 1250 mg/m² or carboplatin AUC 5 + gemcitabine 1000 mg/m² IV q3w; **Defined as any of the following: signs or symptoms of PD; decline in ECOG PS; progression at critical anatomical sites that cannot be managed by permitted medical interventions; ^{‡*}By RECIST v1.1

Spigel, et al. ESMO 2019 (Abs LBA78)

IMpower110: OS in the TC3/IC3 population

NE, not estimable; *Stratified; *Stratified log-rank


Data cut-off: 10 September 2018

• Spigel, et al. ESMO 2019 (Abs LBA78)

IMpower110: OS in key subgroups (TC3/IC3-WT population)

	OS bene	<u>Median OS, mo</u>		
<u>Subgroup</u> *	<u>n (%)</u>		<u>OS HR (95% CI)</u> ‡	Arm A Arm B
< 65 years	102 (49.8)		0.59 (0.34, 1.04)	NE 13.1
65-74 years	80 (39.0)		0.63 (0.34, 1.19)	17.8 10.4
75-84 years	22 (10.7)	L	1.04 (0.19, 5.70)	NE 16.2
Male	143 (69.8)	⊢	0.57 (0.35, 0.93)	23.1 13.1
Female	62 (30.2)		0.69 (0.34, 1.39)	17.8 14.1
White	169 (82.4)	⊢ − −−	0.67 (0.44, 1.03)	17.8 13.1
Asian	35 (17.1)	• <u></u> 1	0.38 (0.13, 1.13)	NE 14.1
Never used tobacco	24 (11.7)	⊢	1.83 (0.63, 5.31)	8.0 15.9
Current tobacco user	49 (23.9)	⊢	0.35 (0.14, 0.88)	NE 10.2
Previous tobacco user	132 (64.4)	⊢	0.60 (0.36, 1.00)	23.1 13.1
Non-squamous histology	155 (75.6)	⊢ I	0.62 (0.40, 0.96)	20.2 10.5
Squamous histology	50 (24.4)		0.56 (0.23, 1.37)	NE 15.3
ECOG PS 0	73 (35.6)	⊢	0.42 (0.20, 0.92)	NE 15.7
ECOG PS 1	132 (64.4)	⊢ I	0.69 (0.43, 1.10)	16.5 13.1
All TC3 or IC3 WT patients	205 (100)		_ 0.59 (0.40, 0.89)§	20.2 13.1
	().1 1.0 7 Hazard Ratio		the ≥85 years subgroup is not atient's race was unknown; ratified
		Favours Arm A (atezo) Favours Arm B (ch	nemo) Data cut-off: 10 S	eptember 2018

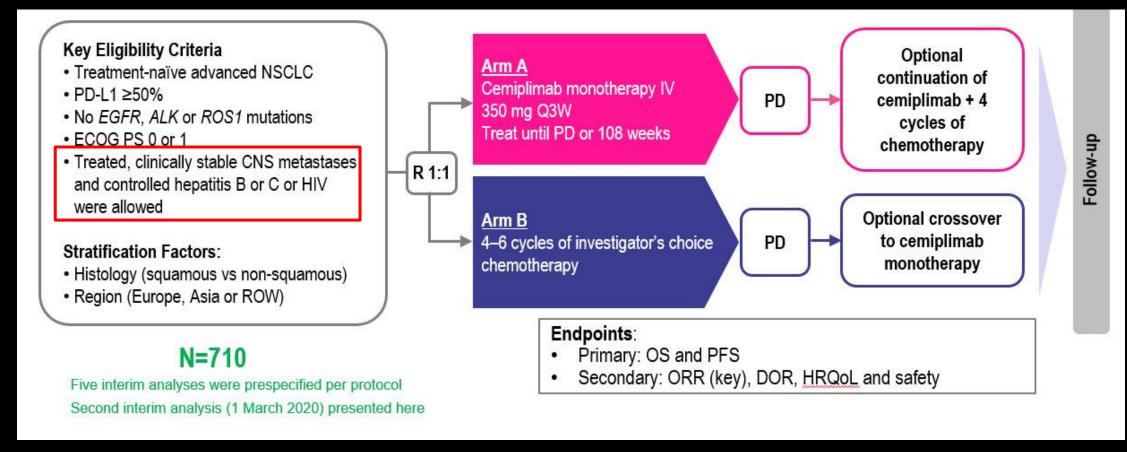
IMpower110: PFS in TC3/IC3 population

*Investigator assessed per RECIST 1.1; *Stratified; *Stratified log-rank; *For descriptive purposes only Data cut-off: 10 September 2018

IMpower110: confirmed ORR (TC3 or IC3 population)

CR PR 60 Arm A (atezo) 38.3% Arm B (chemo) 50 28.6% 40 30 20 10 0 Arm **B** Arm A Median DOR NE 6.7 (1.8+ to 29.3+) (2.6 to 23.9+) (range), mo

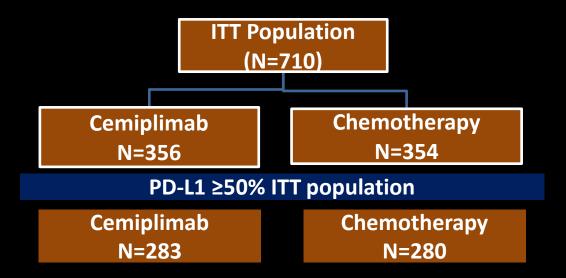
TC3 or IC3 WT


Confirmed ORR was improved with atezolizumab in the TC3/IC3 population

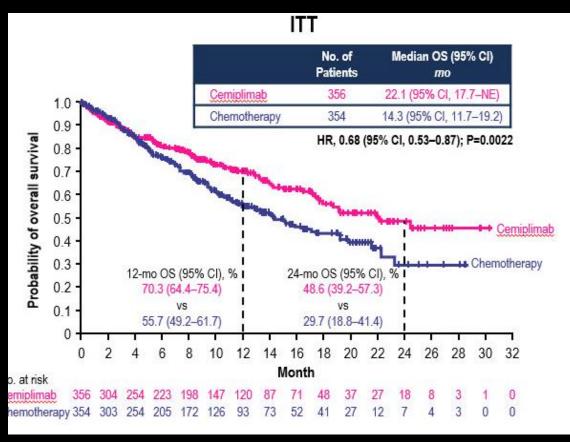
	Arm A (atezo)	Arm B (chemo)
TC2/3 or IC2/3 WT	n=166	n=162
ORR (95% CI), %	30.7 (23.8, 38.3)	32.1 (25.0, 39.9)
Median DOR (range), mo	NE (1.8+ to 29.3+)	5.8 (2.6 to 23.9+)
TC1/2/3 or IC1/2/3 WT	n=277	n=277
ORR (95% CI), %	29.2 (24.0, 35.0)	31.8 (26.3, 37.6)
Median DOR (range), mo	NE (1.8+ to 29.3+)	5.7 (2.4 to 23.9+)

+, censored

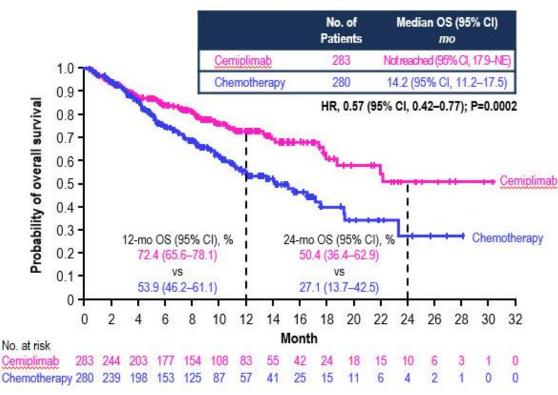
Data cut-off: 10 September 2018


EMPOWER-Lung 1 Study Design

Never smokers (i.e., those who smoked <100 cigarettes in their lifetime) were excluded from the study


Sezer, A et al. EMPOWER-Lung-1. ESMO 2020.

Disposition by PD-L1 Testing Status and Retest



- The initial PD-L1 central testing was not performed according to instructions for use, this led to a modified ITT analysis performed on a subset of 563 patients (79% of the overall ITT) identified as PD-L1 ≥50% by a 22C3 validated test)
- This population comprised patients from:
 - The overall ITT population who were initially tested not according to the instructions for use at entry (n=88; PD-L1 testing pre-August 2018)
 - Those who were re-tested according to instructions for use (n=475; PD-L1 testing post-August 2018)

Overall Survival

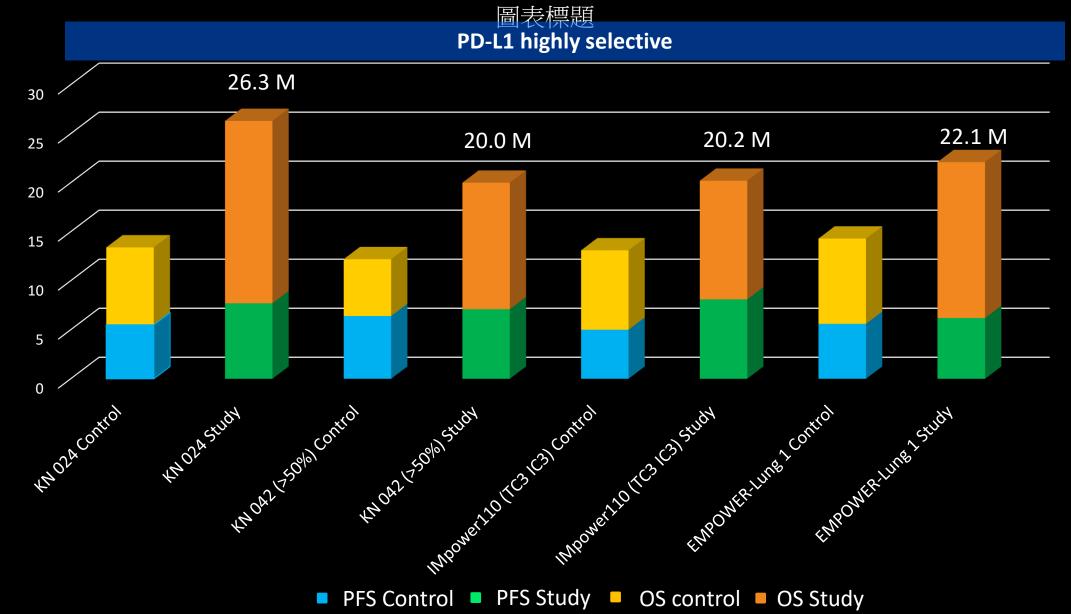
PD-L1 ≥50% ITT

ITT population:

Median follow-up was: 13.1 months (0.1-31.9) for cemiplimab and 13.1 months (0.2-32.4) for chemotherapy

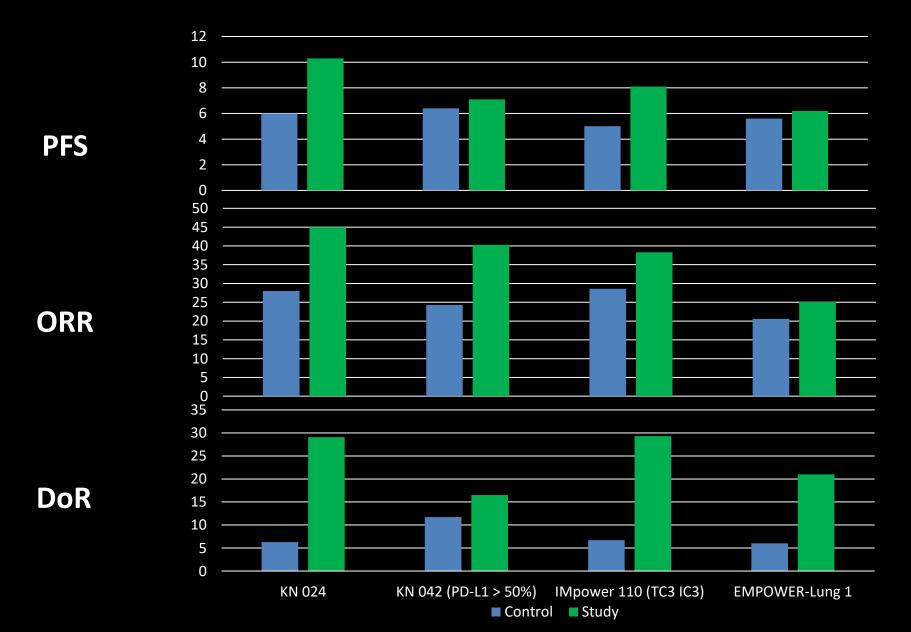
PD-L1 TPS ≥50% population: Median follow-up was: 10.8 months (0.1-3.9) for cemiplimab and 10.2 months (0.2-29.5) for chemotherapy

Objective Response Rate and Duration of Response

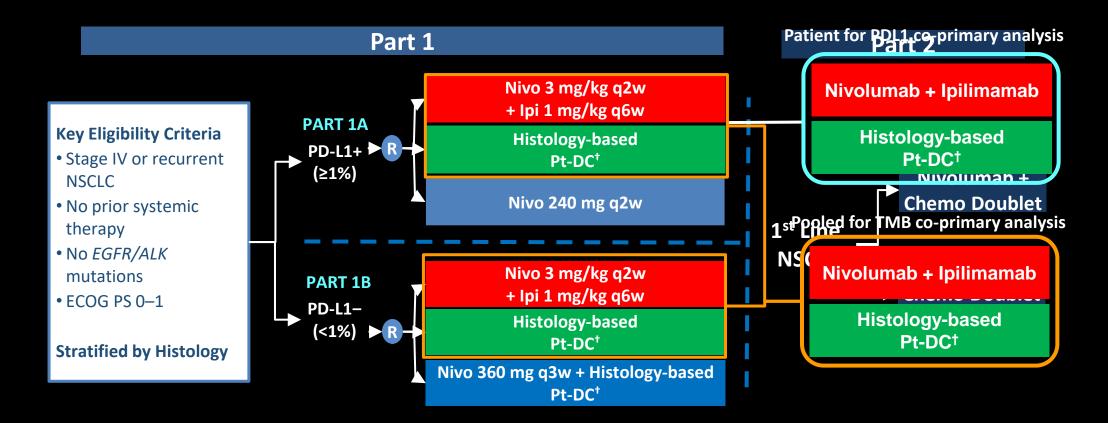

	ITT Pop	oulation	PD-L1 ≥50% ITT			
	Cemiplimab (n=356)	Chemotherapy (n=354)	Cemiplimab (n=283)	Chemotherapy (n=280)		
ORR (95% CI)	36.5% (31.5–41.8)	20.6% (16.5–25.2)	39.2% (33.5–45.2)	20.4% (15.8–25.6)		
Complete Response	3.1%	0.8%	2.1%	1.1%		
Partial Response	33.4%	19.8%	37.1%	19.3%		

Data cut-off date: 1 March 2020

Median Duration of Response (Cemiplimab vs Chemotherapy):


ITT Population: 21.0 months vs 6.0 months
PD-L1≥50% ITT Population: 16.7 months vs 6.0 months

Frontline Treatment OS: IO mono

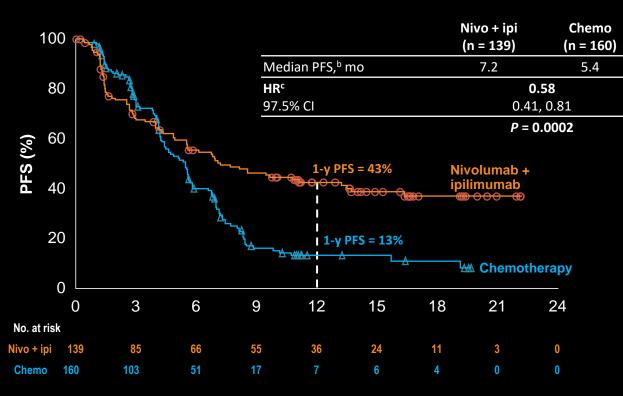


Months

Frontline Treatment IO mono: PFS, ORR and DoR

CheckMate 227 Study Design: IO + IO in all comer

Independent co-primary endpoints: NIVO + IPI vs chemo

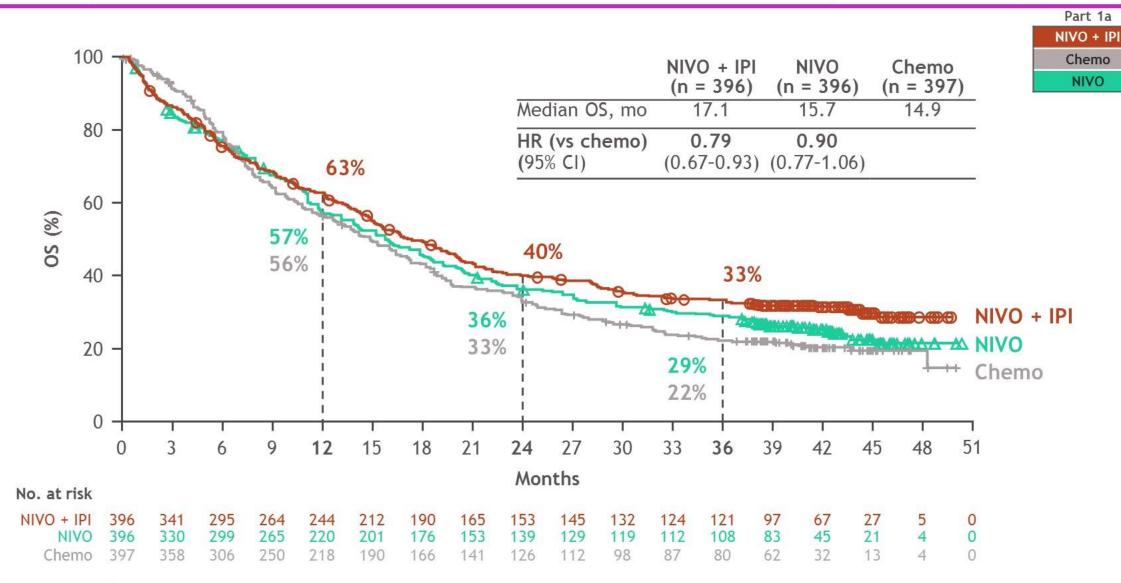

- PFS in high TMB ($\geq 10 \text{ mut/Mb}$) population^f
- OS in PD-L1 \geq 1% population^g

Secondary endpoints (PD-L1 hierarchy):

- PFS: **NIVO + chemo vs chemo** in PD-L1 < 1%
- OS: **NIVO + chemo vs chemo** in PD-L1 < 1%
- OS: **NIVO vs chemo** in PD-L1 \geq 50%

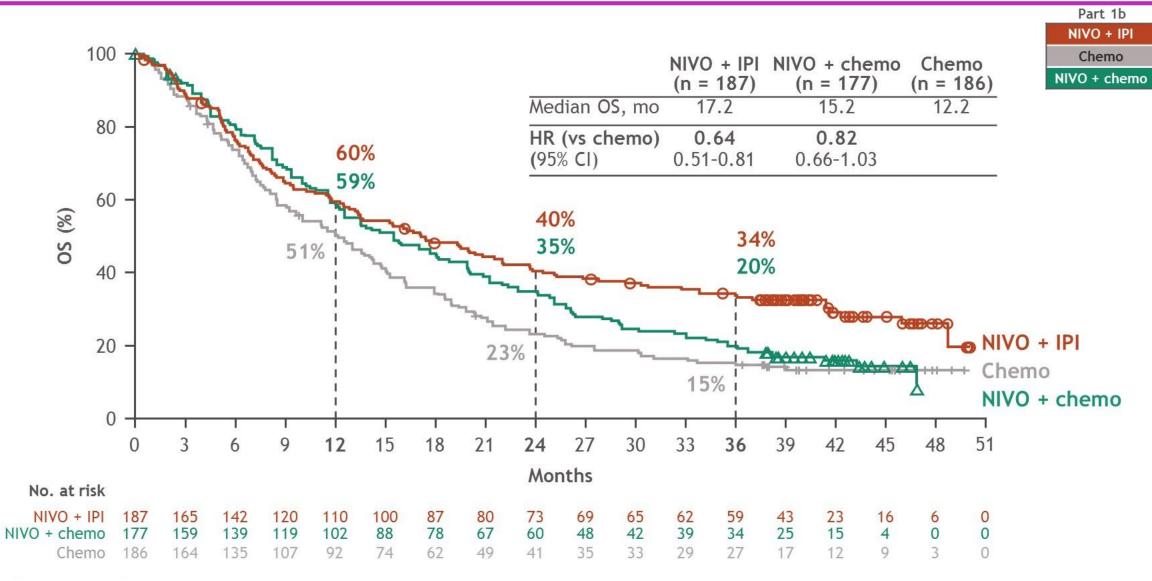
Adopted from Clinicaltrial.gov NCT02477826

Co-primary Endpoint: PFS With Nivolumab + Ipilimumab vs Chemotherapy in Patients With High TMB (≥10 mut/Mb)^a



In patients with TMB <10 mut/Mb treated with nivo + ipi vs chemo, the HR was 1.07 (95% CI: 0.84, 1.35)^d

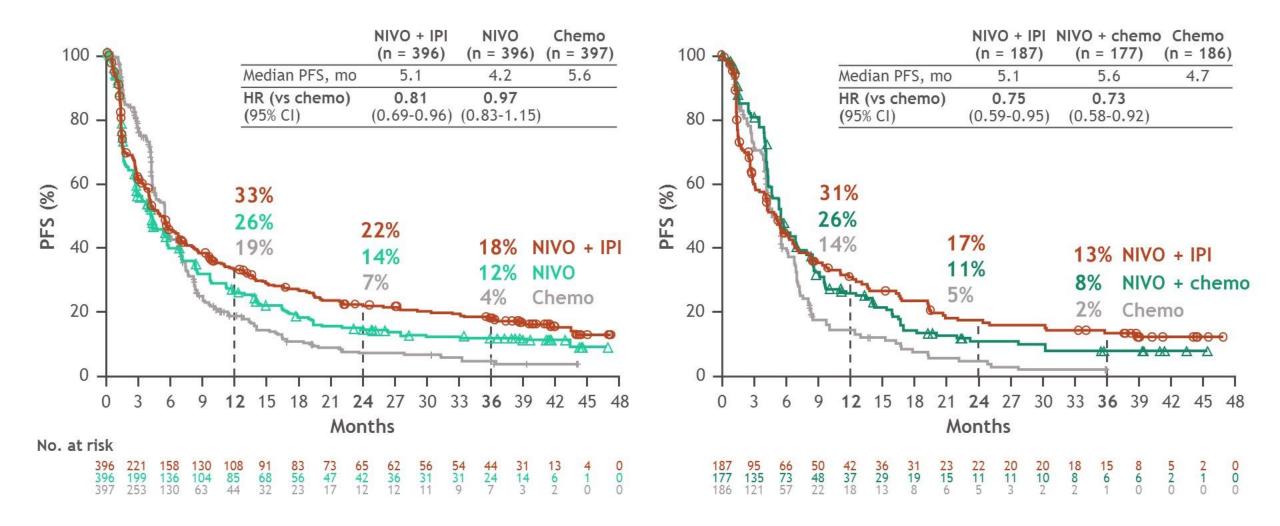
^aPer blinded independent central review (BICR); median (range) of follow-up in the co-primary analysis population was 13.6 mo (0.4, 25.1) for nivo + ipi and 13.2 mo (0.2, 26.0) for chemo; ^b95% CI: nivo + ipi (5.5, 13.2 mo), chemo (4.4, 5.8 mo); ^c95% CI: 0.43, 0.77 mo; ^dThe *P*-value for the treatment interaction was 0.0018


Subgroup	No. of Patients	Nivolumab + ipilimumab (N=583)	Chemotherapy (N=583)	Uns		ard Ratio for Death % CI)
		m	onths			
Randomized Groups						
PD-L1					1	
All randomized	1166	17.1	13.9	-	-	0.73 (0.64-0.84)
<1%	373	17.2	12.2			0.62 (0.49-0.79)
≥1%	793	17.1	14.9	_	•	0.79 (0.65-0.96)
Additional Exploratory Subgroup Analyses						
PD-L1					1	
1–49%	396	15.1	15.1			0.94 (0.75-1.18)
≥50%	397	21.2	14.0	•		0.70 (0.55-0.90)
Tumor mutational burden						
Low, <10 mut/Mb	380	16.2	12.6		•	0.75 (0.59-0.94)
High, ≥10 mut/Mb	299	23.0	16.4		_	0.68 (0.51-0.91)
PD-L1 and tumor mutational burde (mut/Mb) combined	en					
PD-L1 <1%					1	
Tumor mutational burden <10	0 111	15.5	13.0	•		0.69 (0.46-1.05)
Tumor mutational burden ≥10	0 86	20.4	11.2 —	•		0.51 (0.30-0.87)
PD-L1 ≥1%						
Tumor mutational burden <10	0 269	16.2	12.1		• ;	0.78 (0.59-1.02)
Tumor mutational burden ≥10	0 213	24.4	18.1		•	0.77 (0.54-1.09)
PD-L1 ≥50%						
Tumor mutational burden <10	0 125	18.1	8.1			0.67 (0.44-1.03)
Tumor mutational burden ≥10	0 111	NR	17.2			0.63 (0.37-1.07)
			0.25	0.50	1.00	2.00
			Nivolur	nab + Ipilimu Better		otherapy etter

3-year update: OS with NIVO + IPI vs chemo vs NIVO (PD-L1 \ge 1%)

Database lock: February 28, 2020; minimum follow-up for OS: 37.7 months. Dosages were NIVO (3 mg/kg Q2W) + IPI (1 mg/kg Q6W) and NIVO (240 mg Q2W). Among patients who were alive at 3 years, subsequent systemic therapy was received by 35% in the NIVO + IPI arm, 45% in the NIVO arm, and 76% in the chemo arm; subsequent immunotherapies were received by 13%, 21%, and 71%; and subsequent chemotherapy was received by 28%, 33% and 30%, respectively.

3-year update: OS with NIVO + IPI vs Chemo vs NIVO + Chemo (PD-L1 < 1%)

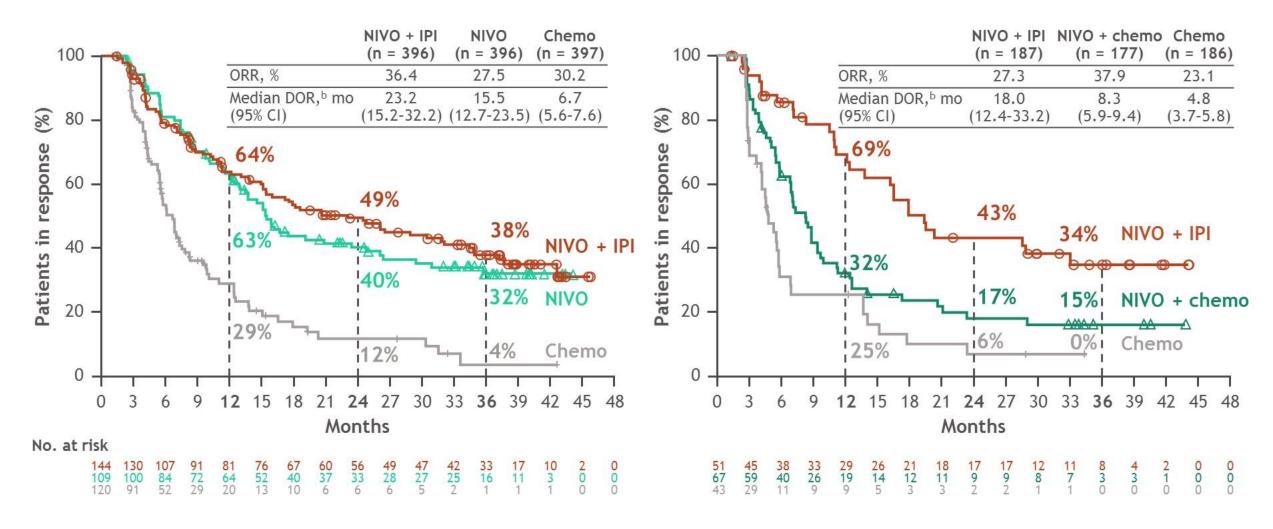


Database lock: February 28, 2020; minimum follow-up for OS: 37.7 months. Dosages were NIVO (3 mg/kg Q2W) + IPI (1 mg/kg Q6W), and NIVO (360 mg Q3W) plus chemo. Among patients who were alive at 3 years, subsequent systemic therapy was received by 49% in the NIVO + IPI arm, 38% in the NIVO + chemo arm, and 78% in the chemo arm; subsequent immunotherapies were received by 12%, 12%, and 74%; and subsequent chemotherapy was received by 46%, 35% and 33%, respectively. 7

3-year update: PFS^a among patients with PD-L1 \ge 1% or < 1%

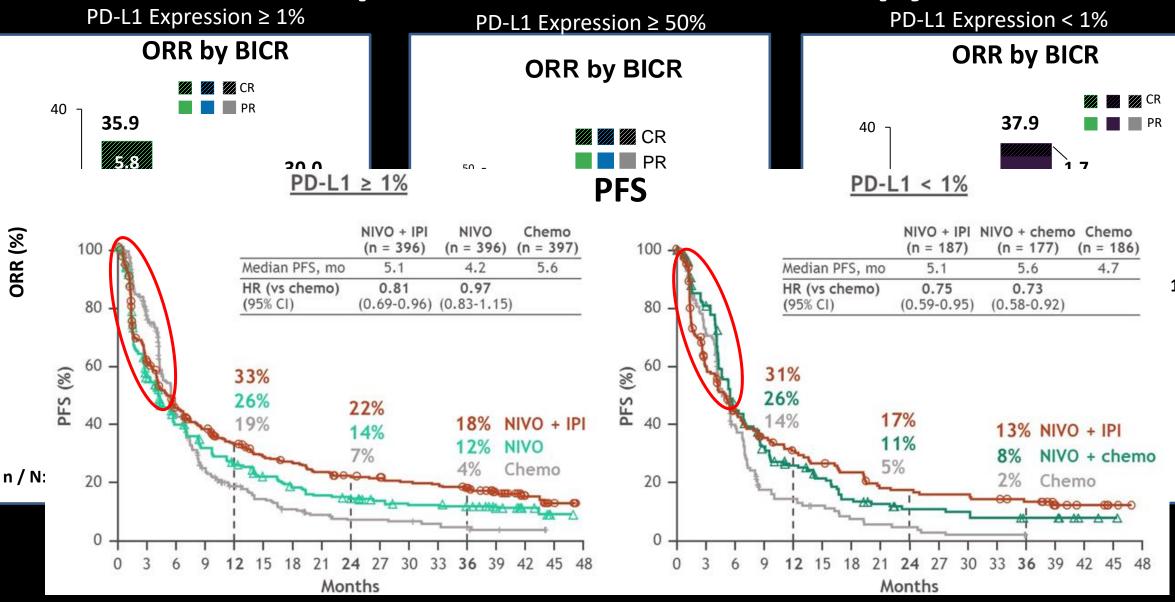
<u>PD-L1 ≥ 1%</u>

<u>PD-L1 < 1%</u>


Dosages were NIVO (3 mg/kg Q2W) + IPI (1 mg/kg Q6W), NIVO (240 mg Q2W), and NIVO (360 mg Q3W) + chemo. ^aPFS was assessed by blinded independent central review.

9

3-year update: ORR^a and DOR^a among patients with PD-L1 \ge 1% or < 1%


<u>PD-L1 ≥ 1%</u>

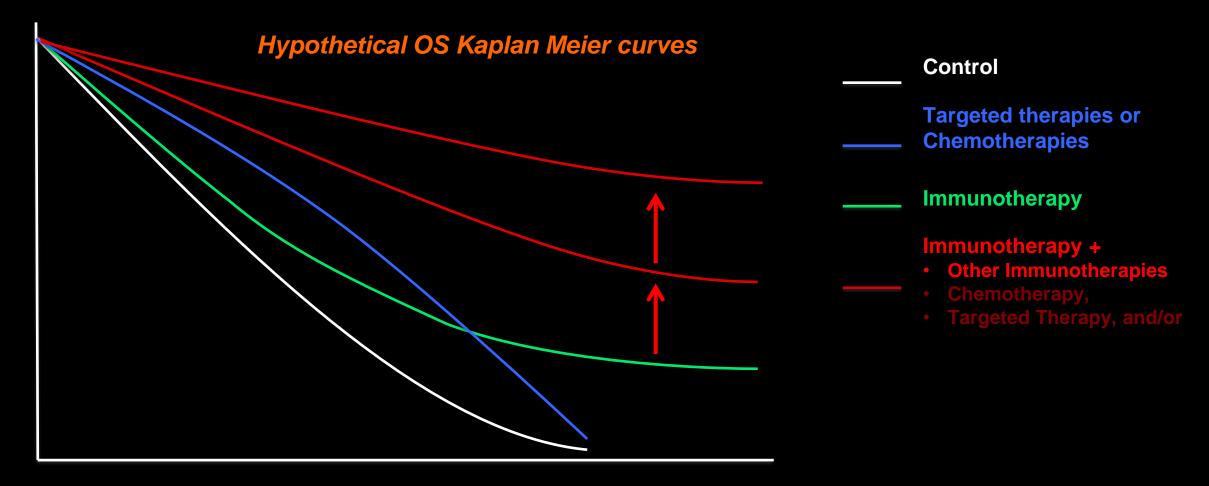
<u>PD-L1 < 1%</u>

Dosages were NIVO (3 mg/kg Q2W) + IPI (1 mg/kg Q6W), NIVO (240 mg Q2W), and NIVO (360 mg Q3W) + chemo. ORR and DOR were assessed by blinded independent central review; DOR was reported for responders only in each treatment arm.


IO + IO ORR is good, but not good enough in NSCLC compared with chemotherapy

Efficacy With NIVO + IPI and NIVO vs Chemo in Patients With Tumor PD-L1 Expression ≥ 50%

NIVO + IPI Chemo NIVO

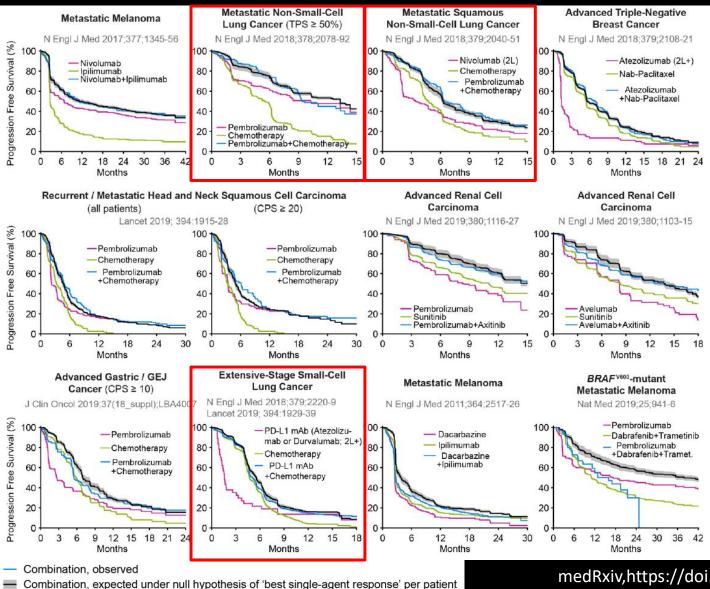

ORR by BICR

Median DOR with NIVO + IPI, NIVO and chemo was 31.8, 17.5 and 5.8 months, respectively

Dosages were NIVO (3 mg/kg Q2W) plus IPI (1 mg/kg Q6W), and NIVO (360 mg Q3W) plus chemo.

The Goal of Cancer Immunotherapy Combinations is to Enable more Potential Cures

- Agents must be safe in combination
- The additional therapy should not interfere with the immunotherapeutic mechanism of action that is driving the antitumor response


Combination Immunotherapy

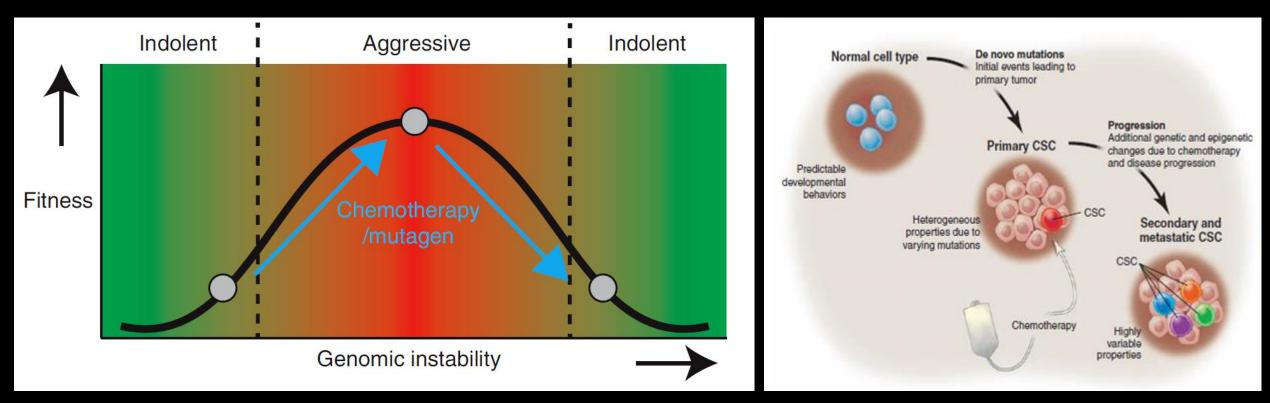
$$1 \leq 1 + 1 \leq 2$$
 IO + IO ? IO + chemotherapy ?

Additive effect 1 + 1 = 2 IO + IO? IO + chemotherapy?

Synergistic effect $1 + 1 \ge 2$ Personalized IO combination ?Our dream

IO + Chemo : additive effect by mathematic model

Progression Free Survival for combination therapies as observed in clinical trials and as predicted from independent activity of the therapies comprising the combination.


 Months
 Palmer AC, AACR Part II

 medRxiv,https://doi.org/10.1101/2020.01.31.20019604, version JUL 10, 2020

Lack of synergistic effect: what does it mean in clinical practice?

- If there is no synergistic effect, should we still choose combo?
 - IO combo "longer median PFS (and OS) "more patients can survive longer.
 - "Bet hedging" effect
- Probably YES, combo is still recommended.
 - Caution: financial toxicity
- Can we use these drugs in sequence?
 - If you are confident: the patient can survive and take the subsequent therapy.
 - The efficacy may not be identical if the drug is used in subsequent lines.
- Unmet needs in clinical practice
 - Biomarkers? To guide monotherapy or (different types of) combo?
 - If synergistic effect exists: personalized IO combo?

Chemotherapy potentially increase the level of genomic instability and create cancer stem cells (CSCs)

CSCs are highly tumorigenic, fundamentally responsible for continued malignant growth, chemoresistance inducer, and initiators of metastasis as well as they have many **immunomodulatory characteristics to create an immune-suppressive microenvironment** for being safe from immune attack

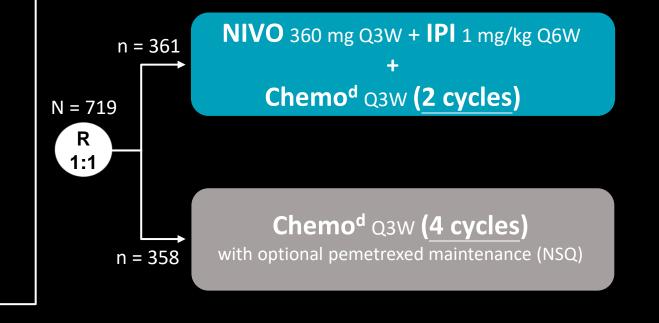
Life Sci. 2020 Jun 25:118005 Science 2009;24:1670-1673 Venkatesan S et al. Cold Spring Harb Perspect Med doi: 10.1101/cshperspect.a026617

What is the role of Limited course of chemotherapy in combination immunotherapy?

- Provide rapid disease control, improve ORR, PFS,
- Avoid prolong chemotherapy adverse effects
- Improve immunotherapy effect (We still don't know the impact of longer duration of chemotherapy on immunotherapy)

Nivolumab + ipilimumab + 2 cycles of platinum-doublet chemotherapy vs 4 cycles chemotherapy as first-line treatment for stage IV/recurrent NSCLC: CheckMate 9LA

Martin Reck,¹ Tudor-Eliade Ciuleanu,² Manuel Cobo,³ Michael Schenker,⁴ Bogdan Zurawski,⁵ Juliana Menezes,⁶ Eduardo Richardet,⁷ Jaafar Bennouna,⁸ Enriqueta Felip,⁹ Oscar Juan-Vidal,¹⁰ Aurelia Alexandru,¹¹ Hiroshi Sakai,¹² Arnaud Scherpereel,¹³ Shun Lu,¹⁴ Thomas John,¹⁵ David P. Carbone,¹⁶ Stephanie Meadows-Shropshire,¹⁷ Jinchun Yan,¹⁷ Luis G. Paz-Ares¹⁸


¹Department of Thoracic Oncology, Airway Research Center North, German Center for Lung Research, LungClinic, Grosshansdorf, Germany; ²Institutul Oncologic Prof. Dr. Ion Chiricuta and UMF Iuliu Hatieganu, Cluj-Napoca, Romania; ³Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, IBIMA, Málaga, Spain; ⁴SF. Nectarie Oncology Center, Craiova, Romania; ⁵Ambulatorium Chemioterapii, Bydgoszcz, Poland; ⁶Hospital Nossa Senhora Da Conceição, Porto Alegre, Brazil; ⁷Instituto Oncológico De Córdoba, Córdoba, Argentina; ⁸Thoracic Oncology Unit, University Hospital of Nantes, Nantes, France; ⁹Vall d'Hebron University Hospital, Barcelona, Spain; ¹⁰Hospital Universitario La Fe, Valencia, Spain; ¹¹Institute of Oncology "Prof. Dr. Alexandru Trestioreanu" Bucha, Bucharest, Romania; ¹²Saitama Cancer Center, Saitama, Japan; ¹³Regional University Hospital Center of Lille, Hospital Calmette, Lille, France; ¹⁴Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, China; ¹⁵Austin Hospital, Heidelberg, Australia; ¹⁶The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA; ¹⁷Bristol-Myers Squibb, Princeton, NJ, USA; ¹⁸Hospital Universitario 12 de Octubre, CNIO, Universidad Complutense & CiberOnc, Madrid, Spain

CheckMate 9LA study design^a

Key Eligibility Criteria

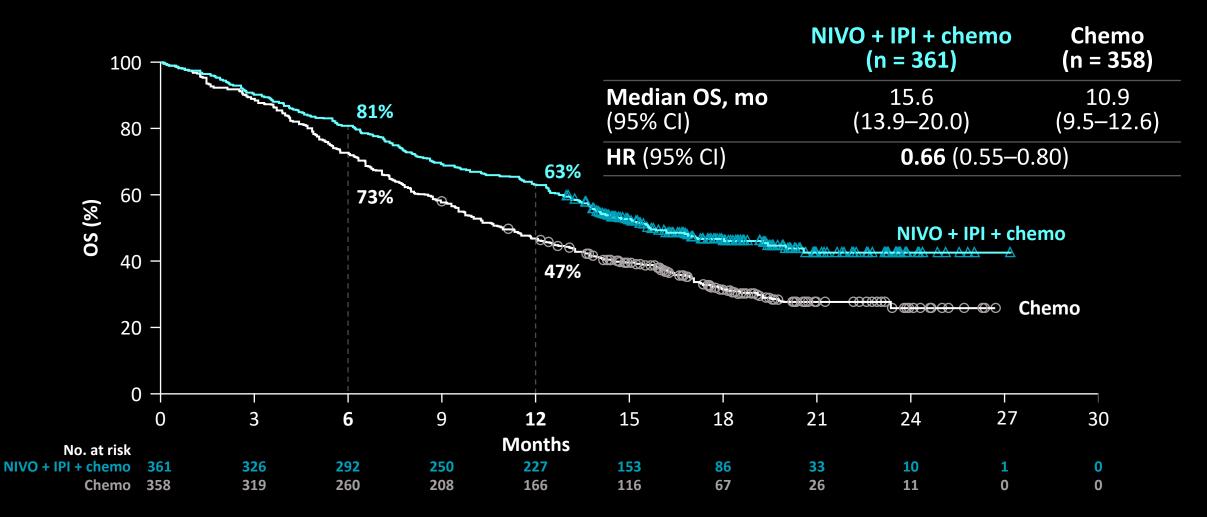
- Stage IV or recurrent NSCLC
- No prior systemic therapy
- No sensitizing *EGFR* mutations or known *ALK* alterations
- ECOG PS 0-1

Stratified by PD-L1^b (< 1%^c vs ≥ 1%), sex, and histology (SQ vs NSQ)

Until disease progression, unacceptable toxicity, *or* for 2 years for immunotherapy

Primary endpoint

• OS

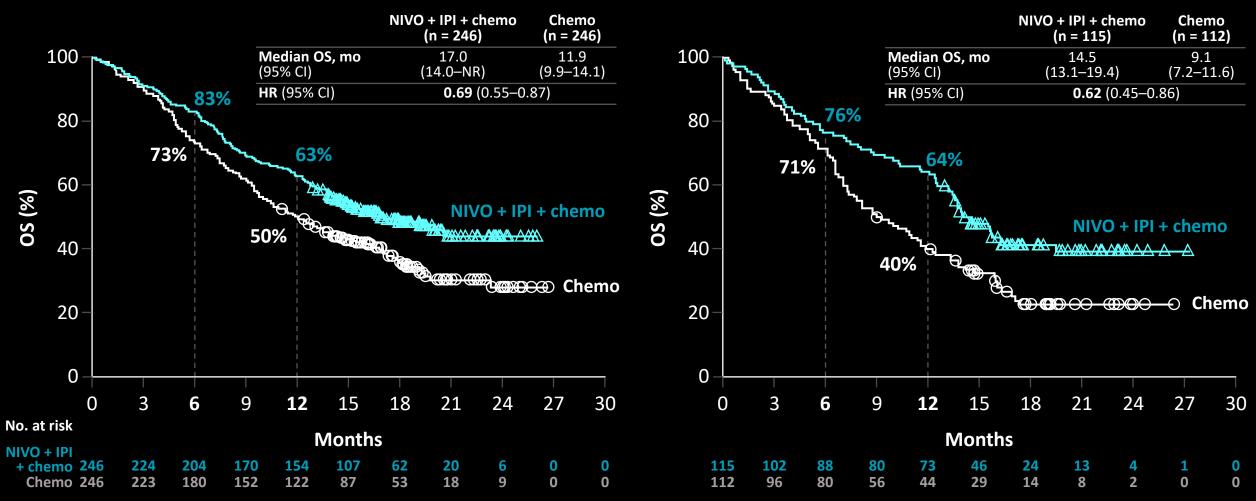

Secondary endpoints

- PFS by BICR^e
- ORR by BICR^e
- Efficacy by tumor PD-L1 expression

Interim database lock: October 3, 2019; minimum follow-up: 8.1 months for OS and 6.5 months for all other endpoints. Updated database lock: March 9, 2020; minimum follow-up: 12.7 months for OS and 12.2 months for all other endpoints.

^aNCT03215706; ^bDetermined by the PD-L1 IHC 28-8 pharmDx assay (Dako); ^cPatients unevaluable for PD-L1 were stratified to PD-L1 < 1% and capped to 10% of all randomized patients; ^dNSQ: pemetrexed + cisplatin or carboplatin; SQ: paclitaxel + carboplatin; ^eHierarchically statistically tested.

Primary endpoint (updated): Overall survival^a


Minimum follow-up: 12.7 months.

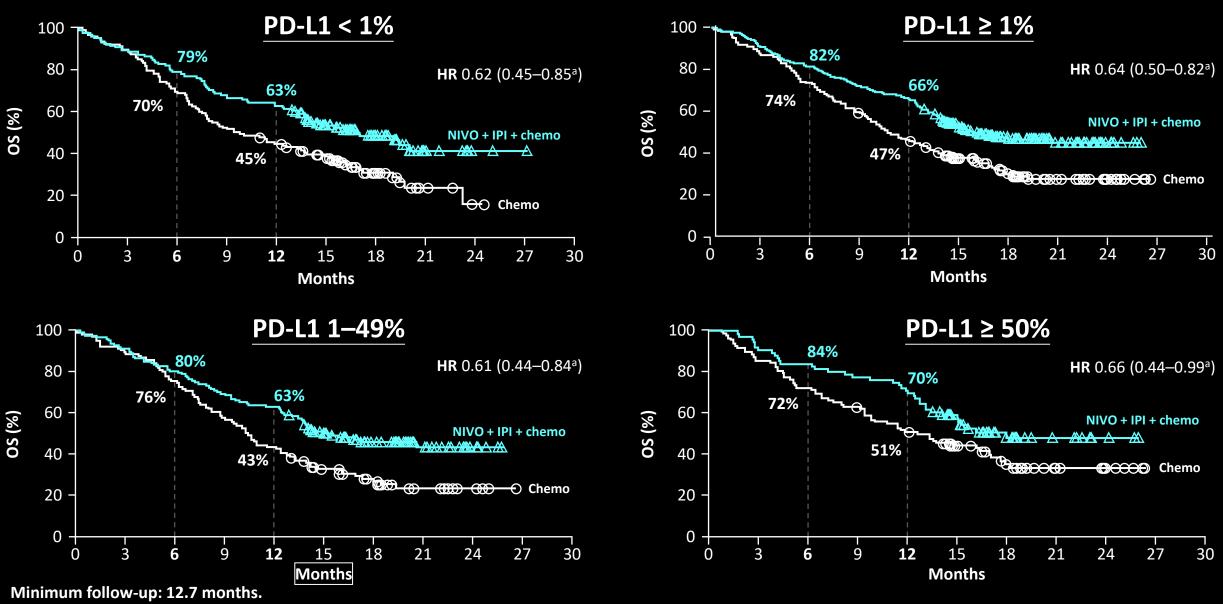
^aPatients remaining in follow-up were censored on the last date they were known to be alive; 47% of patients in the NIVO + IPI + chemo arm and 32% of patients in the chemo arm were censored. Subsequent systemic therapy was received by 31% of patients in the NIVO + IPI + chemo arm and 40% in the chemo arm; subsequent immunotherapy was received by 5% and 30%, and subsequent chemotherapy by 29% and 22%, respectively. Among patients with BICR-confirmed disease progression on study, subsequent systemic therapy was received by 40% in the NIVO + IPI + chemo arm and 44% in the chemo arm; subsequent immunotherapy was received by 7% and 34%, and subsequent chemotherapy by 38% and 24%, respectively

Overall survival by histology

NSQ NSCLC^a

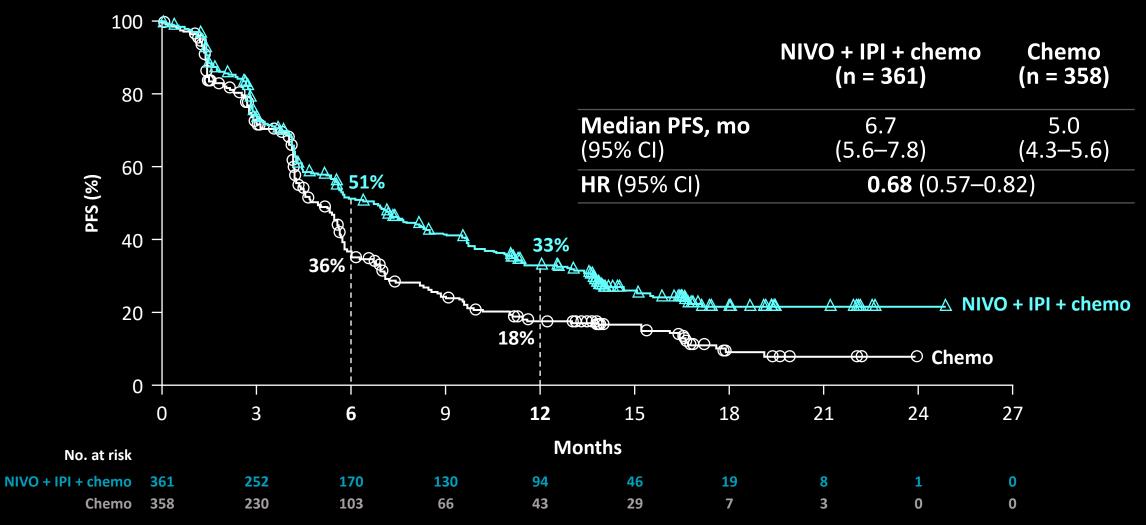
SQ NSCLC^b

Minimum follow-up: 12.7 months.


^aSubsequent systemic therapy was received by 30% of patients in the NIVO + IPI + chemo arm and 39% of patients in the chemo arm; subsequent immunotherapy was received by 6% and 28%, and subsequent chemotherapy by 29% and 22%, respectively; ^bSubsequent systemic therapy was received by 31% of patients in the NIVO + IPI + chemo arm; subsequent and 44% of patients in the chemo arm; subsequent immunotherapy was received by 4% and 35%, and subsequent chemotherapy by 30% and 24% of patients, respectively.

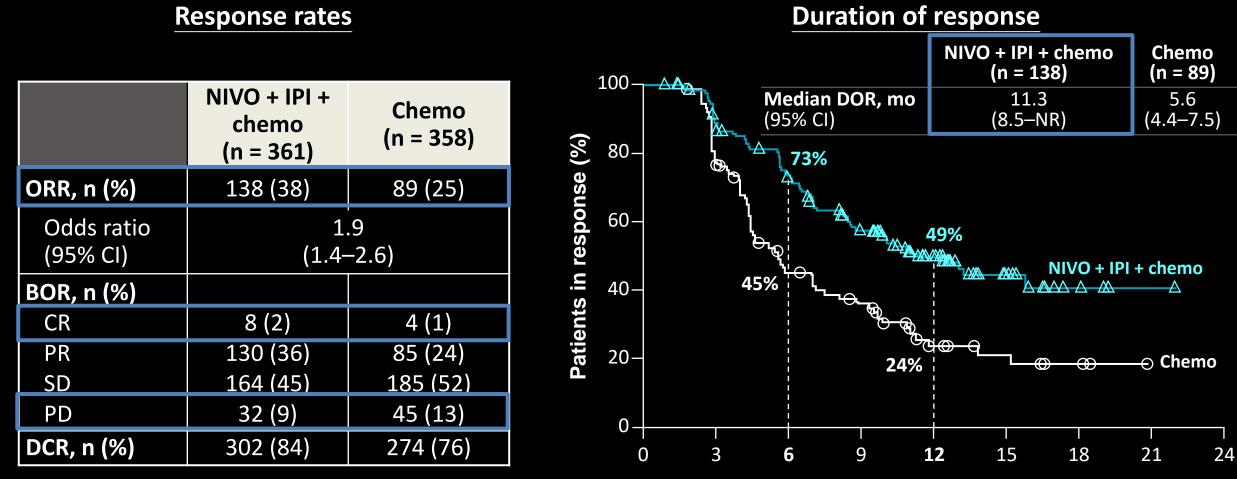
Overall survival subgroup analysis

	Median OS, mo					
Subgroup	NIVO + IPI + chemo	Chemo	Unstratified HR	Unstratified HR (95% CI)		
	n = 361	n = 358				
All randomized (N = 719)	15.6	10.9	0.66ª	—		
< 65 years (n = 354)	15.6	10.7	0.61	I		
65 to < 75 years (n = 295)	19.4	11.9	0.62			
≥ 75 years (n = 70)	8.5	11.5	1.21			
Male (n = 504)	14.1	9.8	0.66			
Female (n = 215)	19.4	15.8	0.68			
ECOG PS 0 (n = 225)	NR	15.4	0.48	I		
ECOG PS 1 (n = 492)	13.6	9.7	0.75	_ _		
Never smoker (n = 98)	14.1	17.8	1.14			
Smoker (n = 621)	15.6	10.4	0.62	 ¦		
Squamous (n = 227)	14.5	9.1	0.62			
Non-squamous (n = 492)	17.0	11.9	0.69			
Liver metastases (n = 154)	10.2	8.1	0.83			
No liver metastases (n = 565)	19.4	12.4	0.64	—		
Bone metastases (n = 207)	11.9	8.3	0.74			
No bone metastases (n = 512)	20.5	12.4	0.65			
CNS metastases (n = 122)	NR	7.9	0.38			
No CNS metastases (n = 597)	15.4	11.8	0.75	_ _		
PD-L1 < 1% (n = 264)	16.8	9.8	0.62			
PD-L1 ≥ 1% (n = 407)	15.8	10.9	0.64	—		
PD-L1 1–49% (n = 233)	15.4	10.4	0.61	i		
PD-L1 ≥ 50% (n = 174)	18.0	12.6	0.66			
nimum follow-up: 12.7 months. 0.125 0.25 0.5 1 2						
atified HR; unstratified HR was 0.67 (95% CI, 0.55–0.81).						


Mir ^aStra 4

Overall survival by PD-L1 expression level

^a95% CI.


Progression-free survival per BICR^a

Minimum follow-up: 12.2 months.

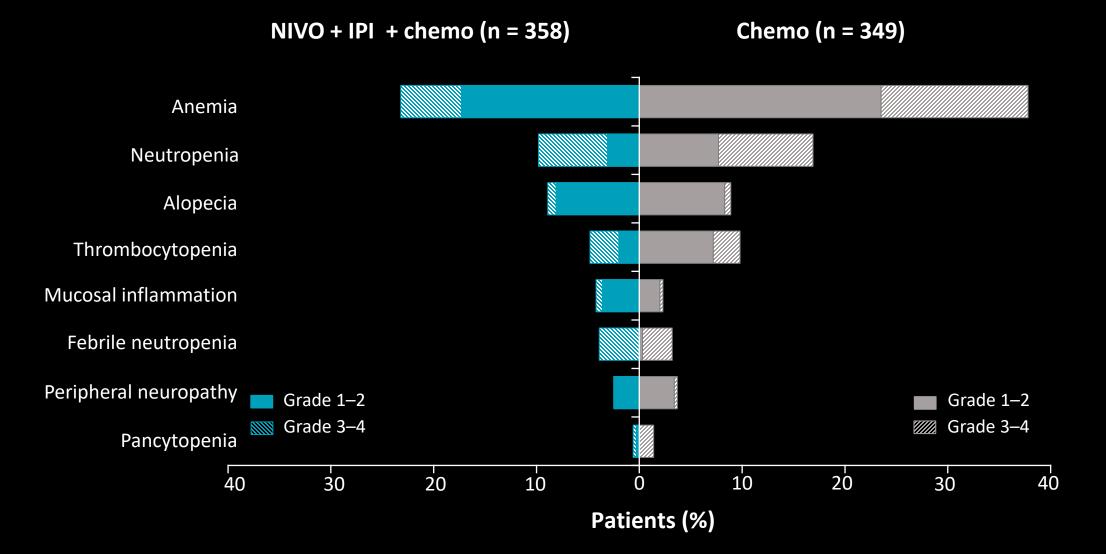
^aPatients who did not progress or die were censored on the date of their last evaluable tumor assessment; those who did not have any study tumor assessments and did not die were censored on their date of randomization; patients without reported progression who went on to receive palliative local therapy or subsequent anti-cancer therapy were censored on the date of their last evaluable tumor assessment prior to starting either therapy.

ORR per BICR and DoR

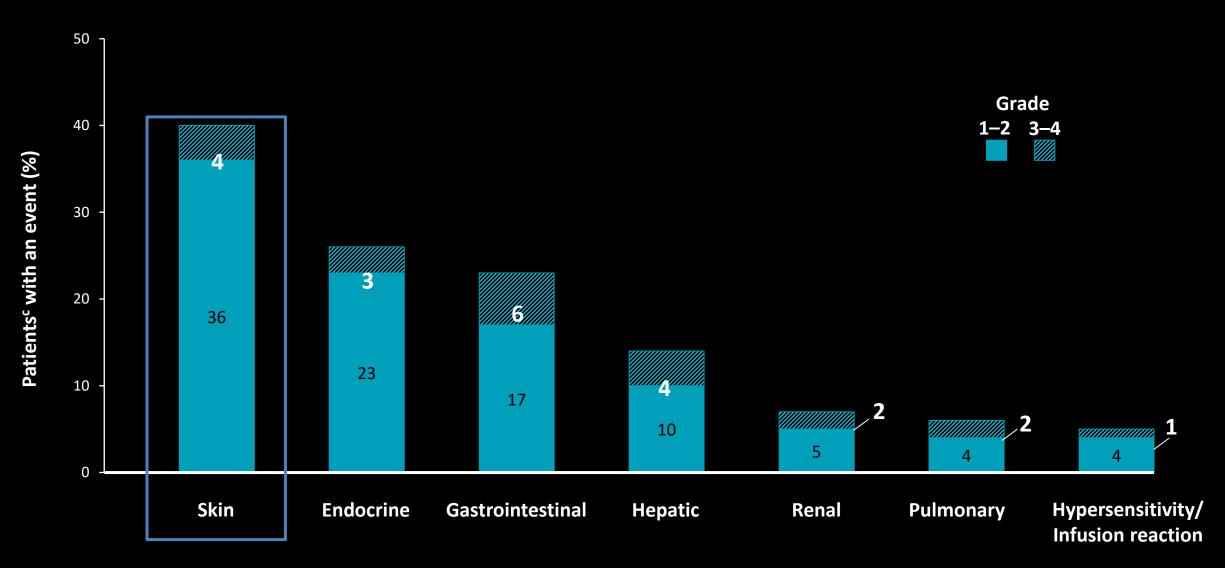
No. at risk NIVO + IPI		Months							
+ chemo 138	116	95	68	40	17	4	1	0	
Chemo	89	68	36	27	12	8	3	0	0

Safety summary of TRAEs

Due to differences in study designs and study populations, comparisons with other NSCLC IO studies should not be made.


	NIVO + IPI + chemo (n = 358)		Chemo (n = 349)		
TRAE,ª %	Any grade	Grade 3–4	Any grade	Grade 3–4	
Any TRAE	92	47	88	38	
TRAEs leading to discontinuation of any component of the regimen	19	16	7	5	
Serious TRAEs	30	25.4	18	15	
Treatment-related deaths ^b	2		2		

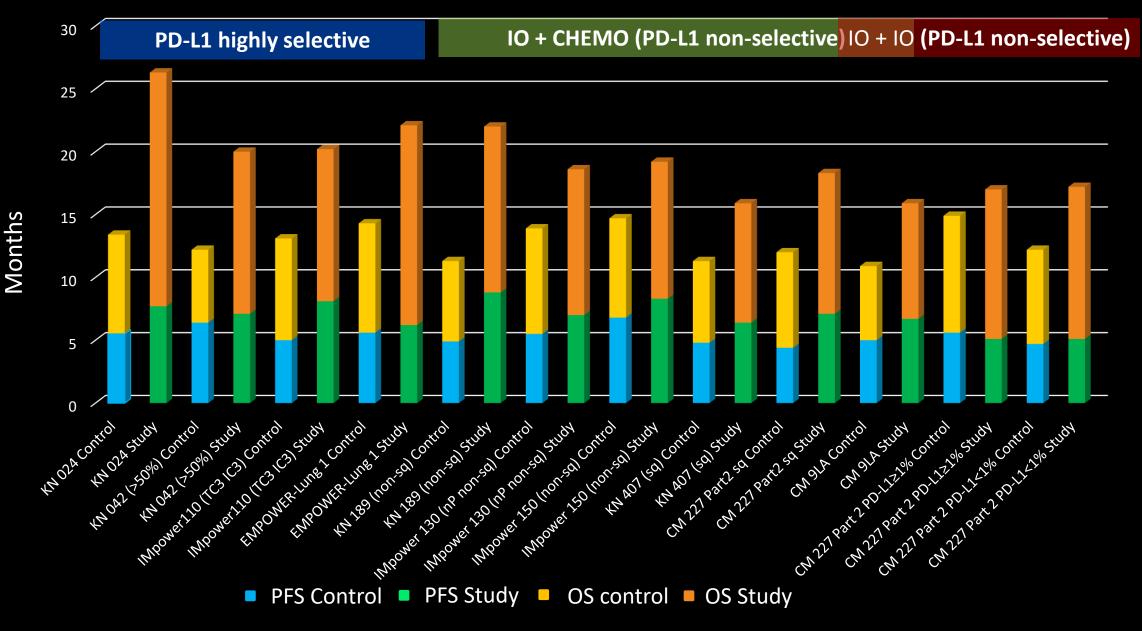
- Median (range) duration of therapy was 6.1 (0–23.5) months and 2.4 (0–24.0) months for NIVO + IPI + chemo versus chemo, respectively
- Most common any-grade TRAEs (≥ 15%) were nausea, anemia, asthenia and diarrhea


Minimum follow-up: 12.2 months.

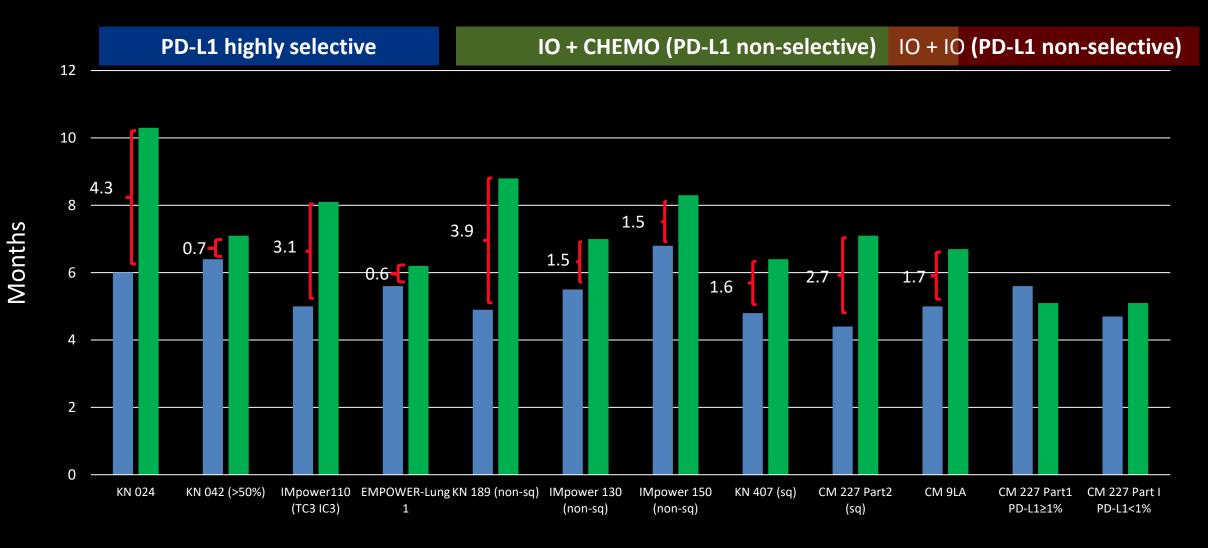
^aIncludes events reported between first dose and 30 days after last dose of study drug; ^bTreatment-related deaths in the NIVO + IPI + chemo arm (n = 7; 1 for each event) were due to acute renal failure due to chemotherapy, thrombocytopenia, pneumonitis, hepatic toxicity, hepatitis, diarrhea, sepsis, and acute renal insufficiency; treatment-related deaths in the chemo arm (n = 6; 1 for each event) were due to sepsis, anemia, pancytopenia, respiratory failure, pulmonary sepsis, and febrile neutropenia (1 grade 5 AE was reported [sudden death due to fall] as potentially treatment-related but cause of death was recorded as unknown).

TRAEs typically associated with chemo^a

Treatment-related select AEs with NIVO + IPI + chemo^{a,b}

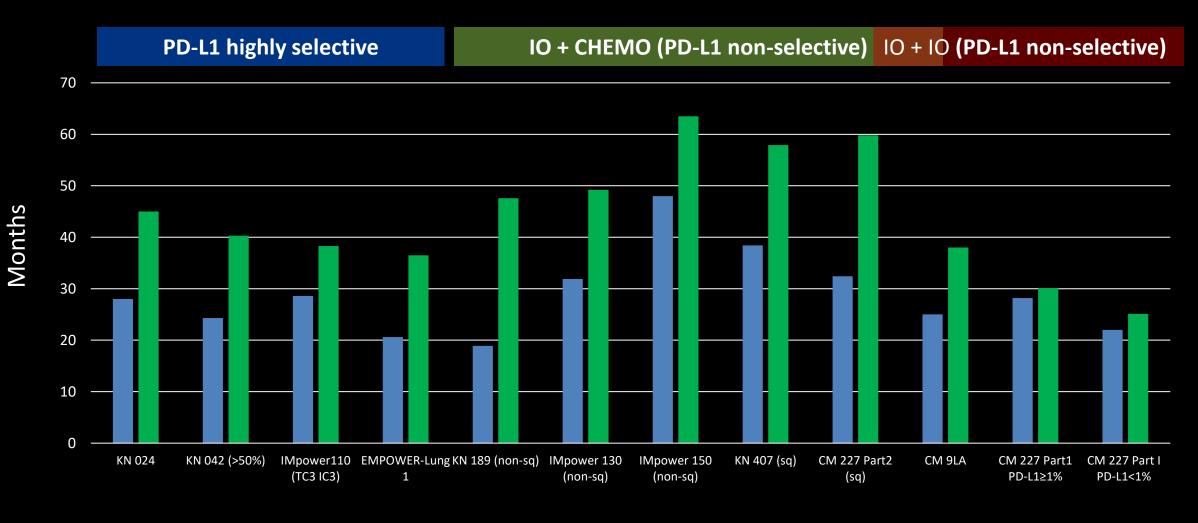


^aTreatment-related select AEs are those with potential immunologic etiology that require frequent monitoring/intervention; ^bIncludes events reported between first dose and 30 days after last dose of study drug; ^cThe total number of patients treated with NIVO + IPI + chemo was 358.

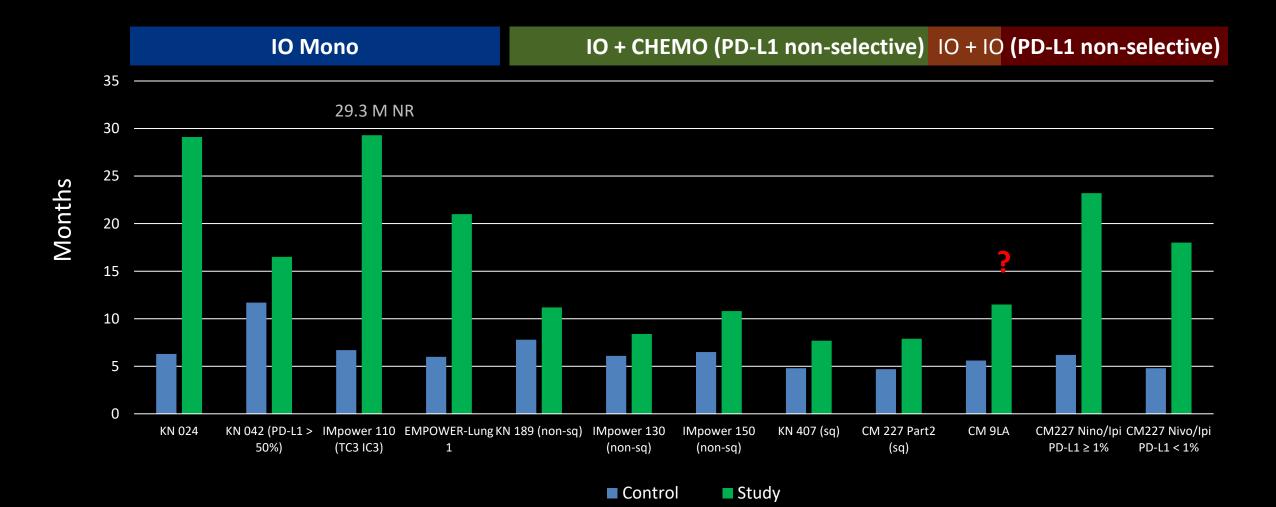

Summary: NIVO + IPI + chemo in first-line advanced NSCLC

- CheckMate 9LA met its primary endpoint of OS at the pre-planned interim analysis (HR 0.69, P = 0.0006)
- Clinically meaningful improvement of all efficacy endpoints was observed and increased with longer follow-up
 - With a minimum follow-up of 12 months, OS benefit was further improved (HR 0.66)
- Magnitude of benefit with NIVO + IPI + 2 cycles of chemo vs chemo was consistent across histologies and all PD-L1 expression levels, including PD-L1 < 1% and 1-49% populations
- No new safety signals were observed for NIVO + IPI + 2 cycles of chemo
- With early separation of OS curves and lower PD rates as BOR, the hypothesis for CheckMate 9LA study design was validated
- CheckMate 9LA demonstrated that NIVO + IPI with a limited course of chemo should be considered as a new first-line treatment option for advanced NSCLC

Frontline Treatment OS: IO mono vs. IO + C/T


Frontline Treatment PFS: IO mono vs. IO + C/T

Control Study


Some trials are not approved by TFDA. It is no intention to promote.

Frontline Treatment ORR: IO mono vs. IO + C/T

Control Study

Frontline Treatment DoR: IO mono vs. IO + C/T vs. IO + IO

Some trials are not approved by TFDA. It is no intention to promote.

How to Choose in Clinics?

PD-1 (-)

PD-1 ≥1%, <50%

PD-1 ≥50%

Chemo + Pembro Chemo + Bev + Atezo (NSQ) Nivo + Ipi Chemo + Nivo + Ipi Chemo + Pembro Chemo + Bev + Atezo (NSQ) Nivo + Ipi Chemo + Nivo + Ipi Pembro (in selected patients) Pembro Atezo Chemo + Pembro Chemo + Bev + Atezo (NSQ) Nivo + Ipi Chemo + Nivo + Ipi

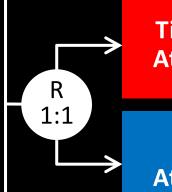
IO + IO long DoR, but ORR no change

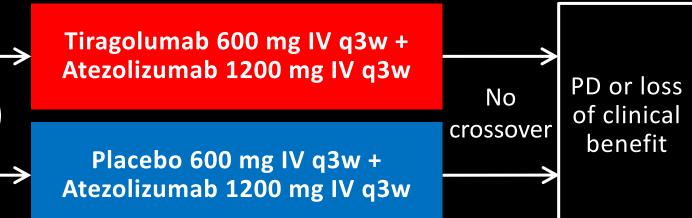
Chemo increases ORR, but ...

IO mono may be good, but not good enough

- PS, age, perceived regimen toxicity/ schedule/ patient preference,? Hx of AI,? STK11m/TMB
- Cost

Modified from Scott Gettinger ASCO 2020

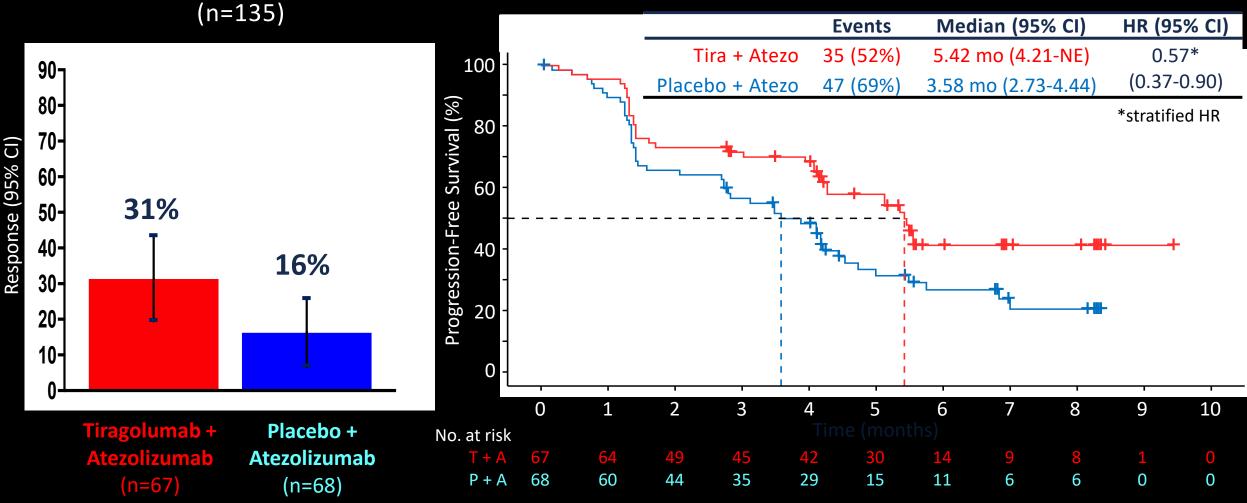

CITYSCAPE Study Design


• 1L Stage IV NSCLC

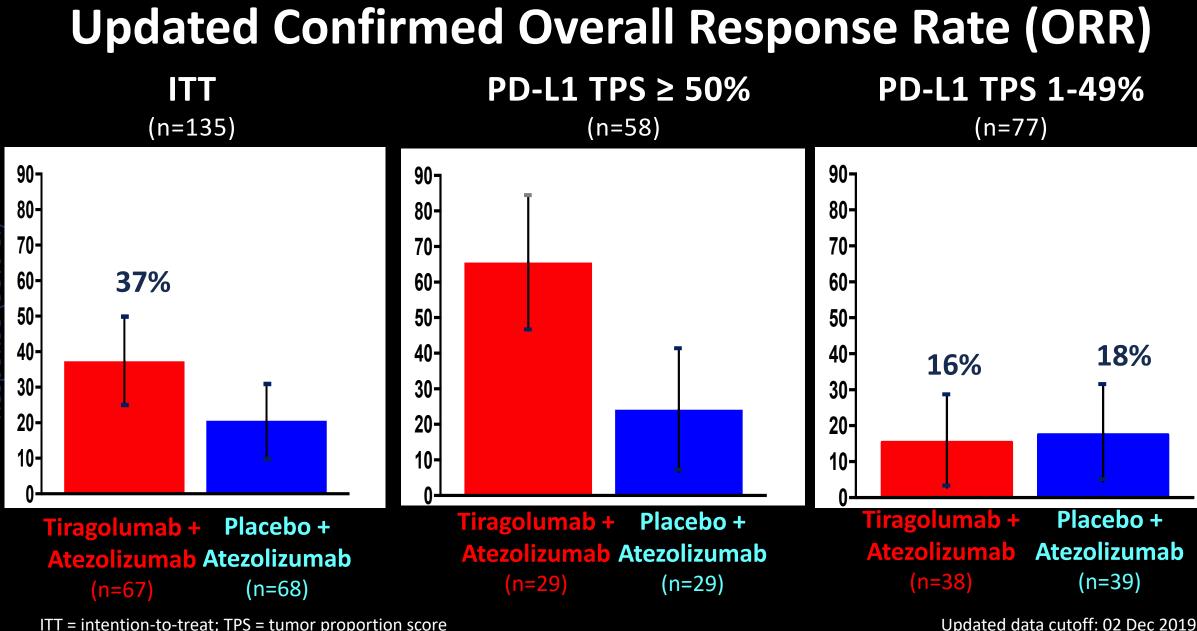
- EGFR/ALK wild-type
- Tumor PD-L1 TPS ≥ 1% by 22C3 IHC by local or central assay
 - N=135

Stratification Factors:

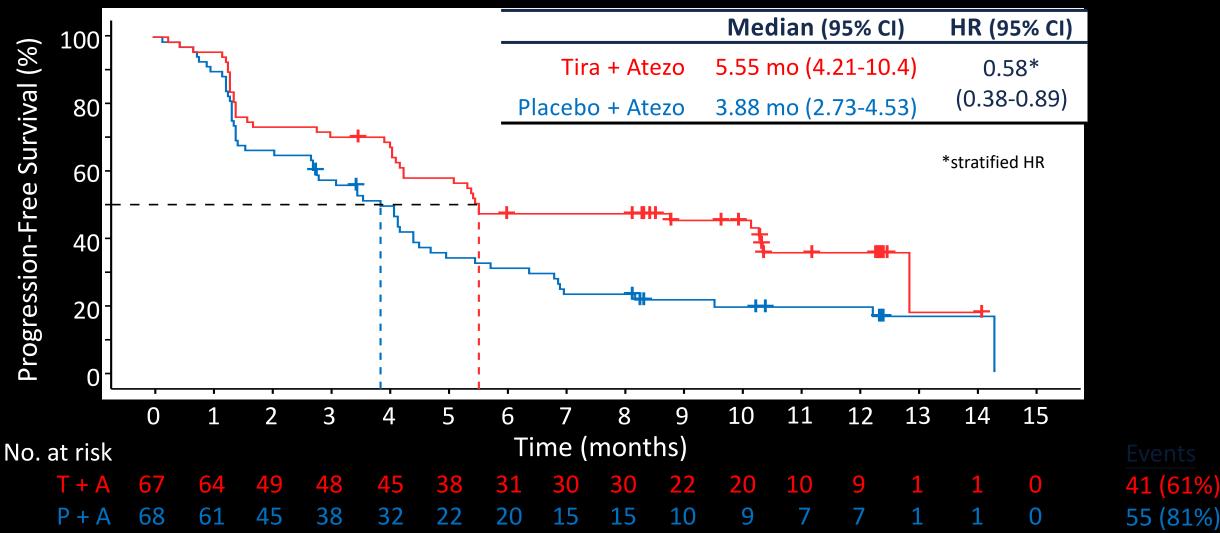
- PD-L1 TPS (1-49% vs ≥ 50%)
- Histology (Non-Squamous vs Squamous)
- Tobacco use (yes vs no)



- Co-Primary Endpoints: ORR and PFS
- Key Secondary Endpoints: Safety, DOR, OS, Patient-reported outcomes (PROs)
- **Exploratory Endpoints:** Efficacy analysis by PD-L1 status

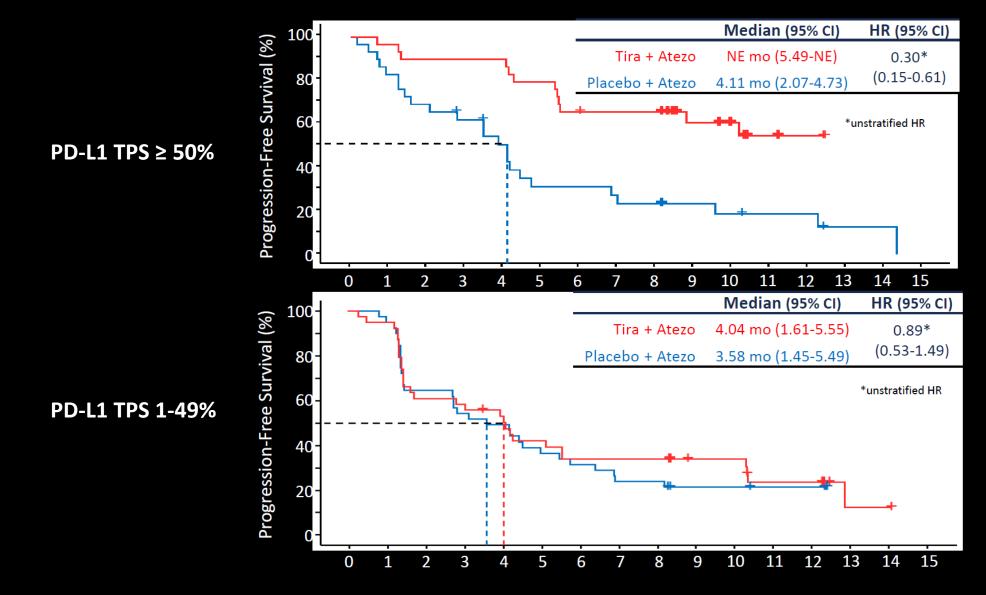

DOR = duration of response; IHC = immunohistochemistry; ORR = confirmed overall response rate; OS = overall survival; PD = progressive disease; PFS = progression free survival ; q3w = every 3 weeks; R = randomized; TPS = tumor proportion score

Confirmed Overall Response Rate (ORR) and PFS ITT: ORR ITT: Investigator-Assessed PFS


ITT= intention-to-treat; NE = non-evaluable, P+A = placebo + atezolizumab; T+A = tiragolumab + atezolizumab

Primary analysis data cutoff: 30 June 2019

ITT = intention-to-treat; TPS = tumor proportion score


Updated Investigator-Assessed PFS: ITT

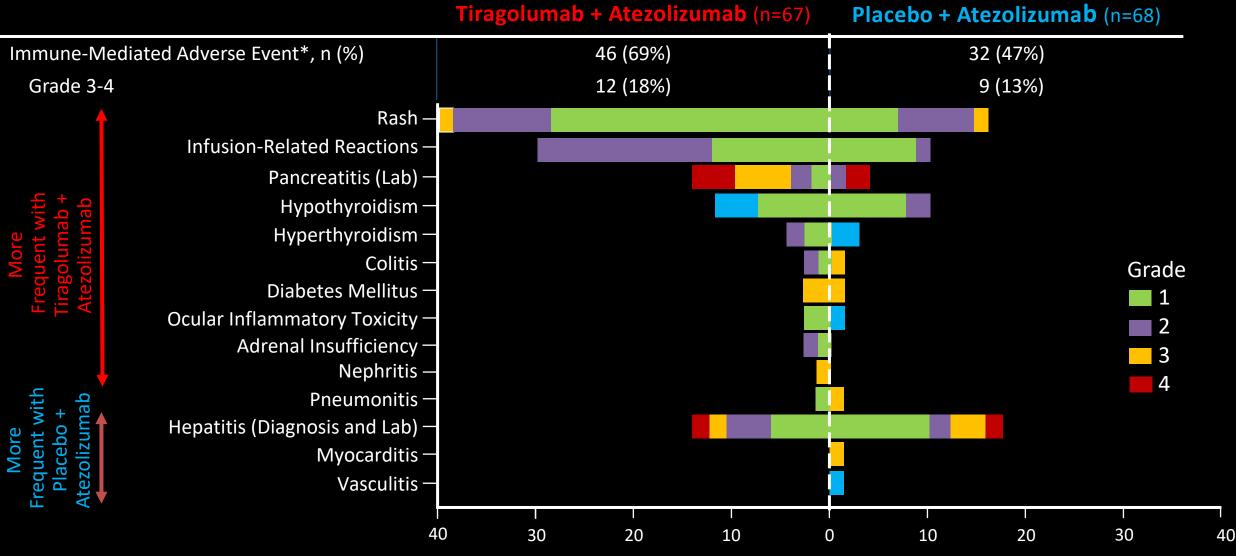
ITT= intention-to-treat; P+A = placebo + atezolizumab; T+A = tiragolumab + atezolizumab

Follow data cutoff: 02 December 2019

Investigator-Assessed PFS: PD-L1 TPS ≥ 50% vs. 1-49%

Updated Safety Summary: Exposure and Adverse Events

	Tiragolumab + Atezolizumab (n=67)	Placebo + Atezolizumab (n=68)
Median treatment duration, mo. (min-max)	4.99 (0–15.1)	2.81 (0–14.3)
Any-cause AE, n (%)	66 (99%)	65 (96%)
Grade 3-5 AE	32 (48%)	30 (44%)
Grade 5 [*]	3 (5%)	5 (7%)
Serious AE	25 (37%)	24 (35%)
AE leading to dose modification/interruption	27 (40%)	19 (28%)
AE leading to treatment withdrawal	7 (10%)	6 (9%)


Updated data cutoff: 2 Dec 2019

AE = adverse event

* Grade 5 AEs for tiragolumab + atezolizumab: Epstein-Barr virus infection, pyrexia, and pneumonia

Grade 5 AEs for placebo + atezolizumab: cardiorespiratory arrest, cerebrovascular accident, multiple organ dysfunction, pneumonia, and pulmonary embolism

Updated Immune-Mediated Adverse Events

*imAE's captured using Atezo AESI basket strategy to identify possibly immune related PT's

Melissa Johnson ASCO 2020

Updated data cutoff: 2 Dec 2019

Conclusions

- IO along or IO + IO has long DoR, but ORR is lower than IO + Chemo
- If we increase ORR of IO + IO, we might have longer OS
- Our practice is dependent on PD-L1 expression, how about other biomarkers such as TMB, T cell infiltration...
- How to choose IO? We need more information
- Cost, adverse effects are also important in choosing IO therapy

Thanks for Your Attention !