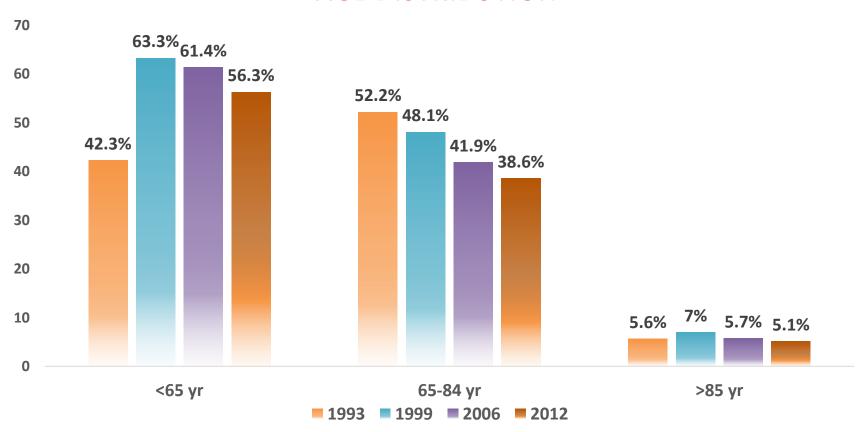
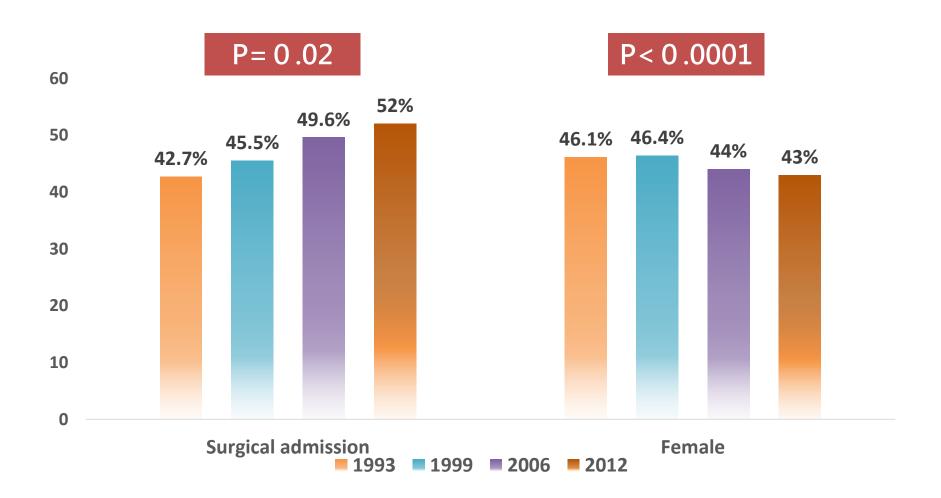

Tracheostomy use rates in the United States, 1993–2012

Tracheostomy rates based on underlying surgical status

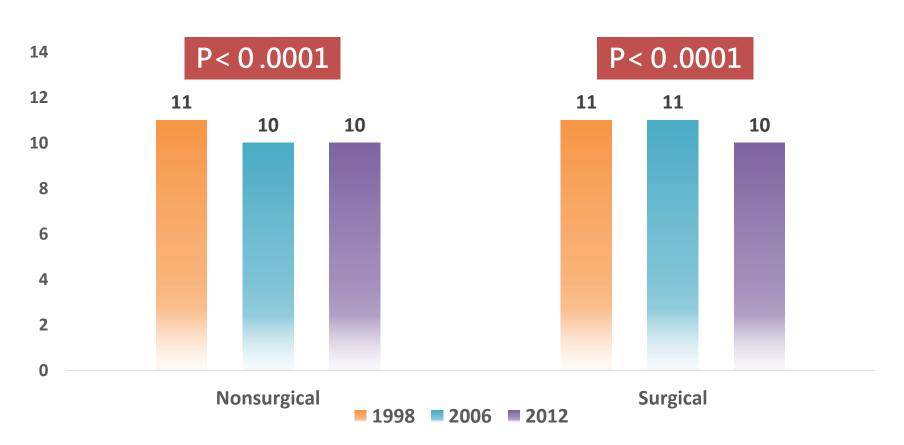


Characteristics of Patients Receiving Tracheostomy in Selected Study Years

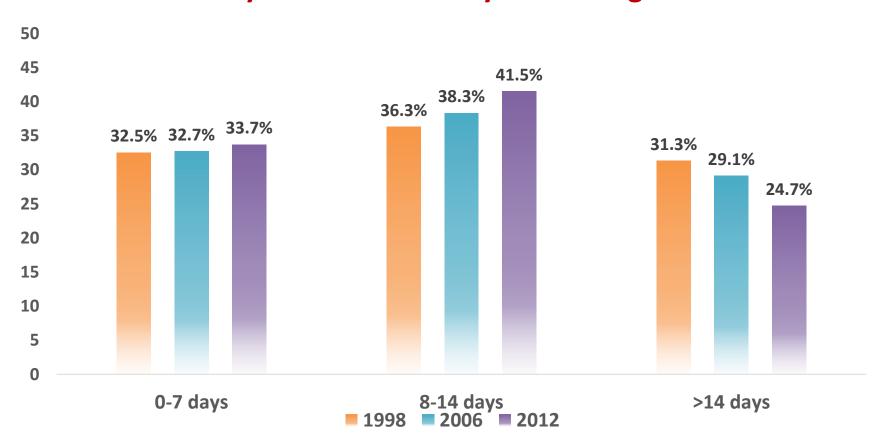


Characteristics of Patients Receiving Tracheostomy in Selected Study Years

AGE DISTRIBUTION



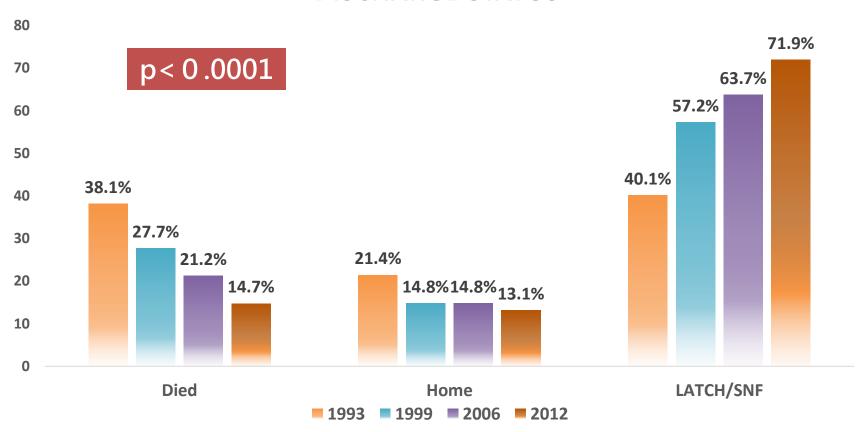
Characteristics of Patients Receiving Tracheostomy in Selected Study Years


Timing of Tracheostomy among Mechanically Ventilated Patients

Days to tracheostomy, median

Timing of Tracheostomy among Mechanically Ventilated Patients

Days to tracheostomy in nonsurgical


Outcomes of Patients Receiving Tracheostomy

Outcomes of Patients Receiving Tracheostomy

DISCHARGE STATUS

Indications of tracheostomy

Failed trials of extubation/failed weaning attempts

Prolonged mechanical ventilation

Tracheal access to remove thick pulmonary secretions

Airway protection and prevention of pulmonary aspiration

Bypass of upper airway obstruction

Trauma or surgery in the face/neck region

Benefits of converting translaryngeal intubation to tracheostomy in ICU patients

Sparing further laryngeal injury

Decreasing airway resistance

Facilitating airway suctioning and secretion management

Facilitating return of speech

Increasing patient mobility

Facilitating oral feeding

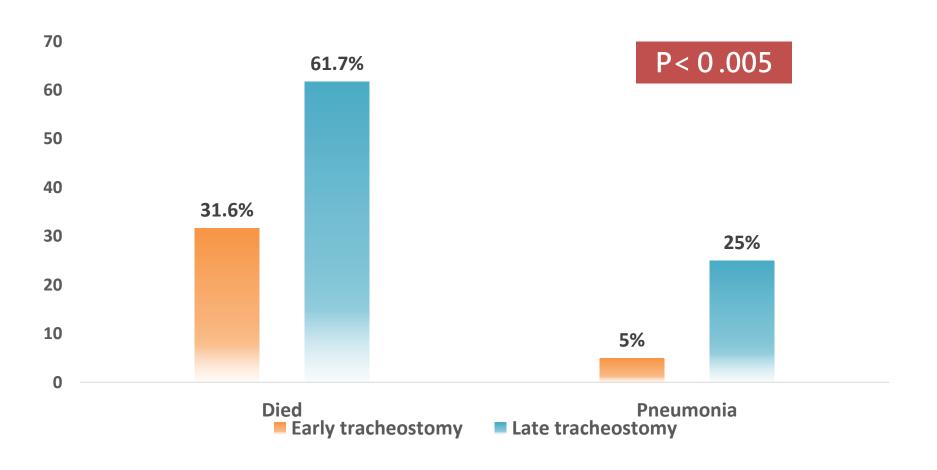
Improving comfort

More aggressive in weaning attempt

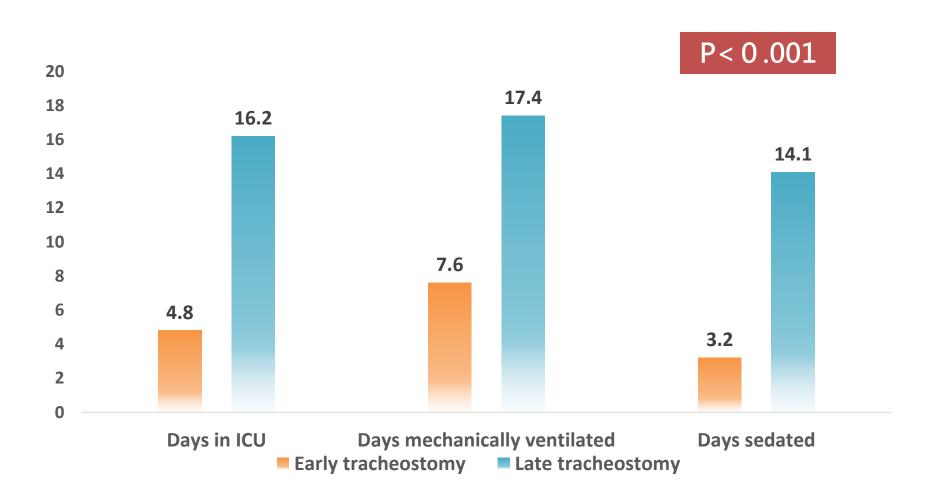
Promote oral hygiene

Facilitating transfer out of ICU

LET'S PK Early vs. Late Tracheostomy

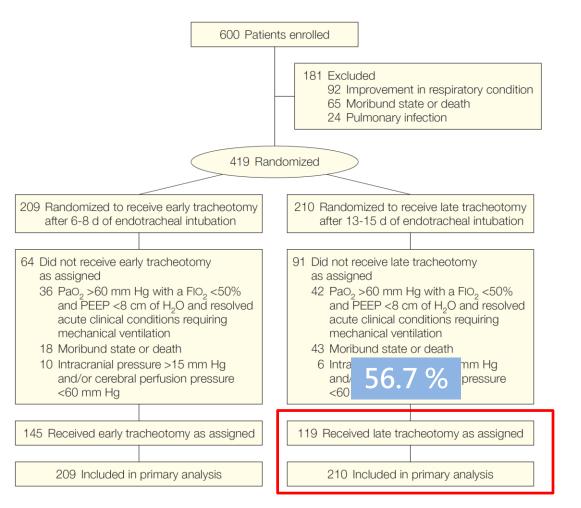

Early PDT to prolonged translaryngeal intubation in critically ill medical patients

≦2 days vs. **≧14** days


DCT	NI_1 2	0	امماناهما	2 0000		IC
KCI,	, NELZ	u rano	lomized	, z ceni	ier in i	U3

Baseline Characteristics	Early Tracheotomy $(n = 60)$	Prolonged Translaryngeal Intubation (n = 60)
A de laws the on	C2 + 10 /	C2 + 0.2
Age, yrs \pm SD	63 ± 10.4	63 ± 9.3
Male, n (%)	31 (51.7)	34 (56.7)
Body mass index, kg/m ²	20.8 ± 8	21.9 ± 9
APACHE II score ± SD	27.4 ± 4.2	26.3 ± 2.6
African American, n (%)	25 (41.7)	28 (46.7)
White, m (%)	20 (33.3)	21 (35)
Hispanic, n (%)	15 (25)	$\frac{11}{2}$ (18.3)
Human immunodeficiency virus ^a	2 5 3 3	3
Diabetes mellitus ^a	5	4 3 3
Coronary artery disease ^a	3	ა ე
Malignancy ^a	60	
Respiratory failure ^a	$\frac{60}{27}$	60
Renal failure (new onset) ^a		25
Severe sepsis ^a	42	40
Organ failure $(\ge 3)^a$	35	33
High-dose vasopressor use (dopamine ≥5	51	50
$\mu \cdot kg^{-1} \cdot min^{-1}$ or norepinephrine) ^a		
Overt disseminated intravascular coagulation ^a	51	50
Lactic acidosis ^a	32	33
Initial platelet count $<50,000^a$	25	23
Community-acquired pneumonia ^a	15	16
Chronic obstructive lung disease ^a	32	31
Congestive heart failure ^a	10	9
Diabetic ketoacidosis ^a	4	3
Aspiration pneumonia ^a	12	11
Urinary tract infection ^a	11	13

Early PDT to prolonged translaryngeal intubation in critically ill medical patients Outcomes



Early PDT to prolonged translaryngeal intubation in critically ill medical patients Outcomes

Early vs Late Tracheotomy in Mechanically Ventilated Adult ICU Patients VAP

RCT, N=619 randomized, 12 Italian ICUs, June 2004 to June 2008

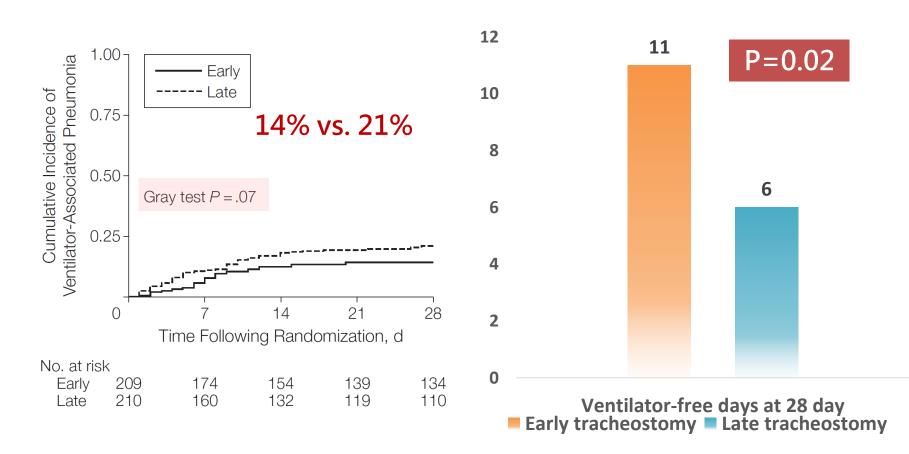
6-8 days vs. 13-15 days

Exclusion

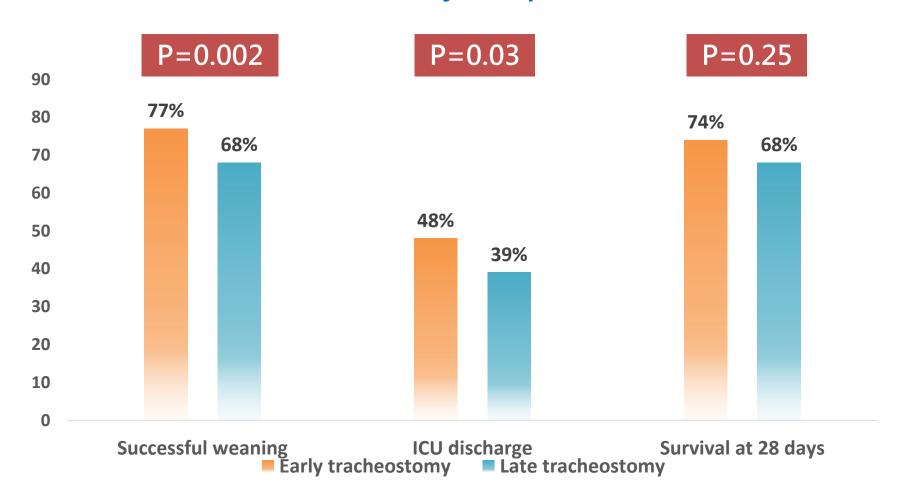
Pulmonary infection

COPD

Esophageal, tracheal, or pulmonary cancer


Hematological malignancy

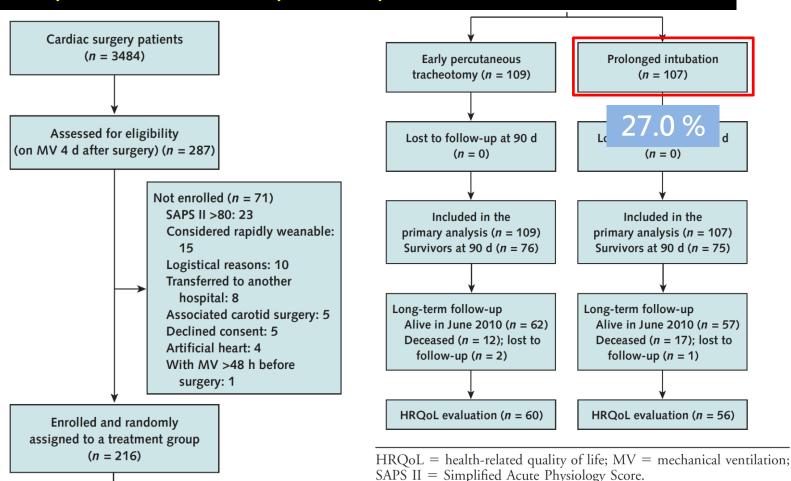
8


Early vs Late Tracheotomy in Mechanically Ventilated Adult ICU Patients Characteristics of the Study Population

	Early Tracheotomy (n = 209)	Late Tracheotomy (n = 210)
At enrollment		
Age, mean (SD), y	61.8 (17.4)	61.3 (16.8)
Male sex, No. (%)	138 (66.0)	142 (67.6)
SAPS II score, mean (SD) ^b	51.1 (8.7)	49.7 (8.6)
SOFA score, mean (SD) ^c	7.9 (2.6)	7.6 (2.9)
Pao ₂ , mean (SD), mm Hg	123 (50)	123 (54)
FIO ₂ , mean (SD)	0.52 (0.17)	0.53 (0.19)
PEEP, mean (SD), cm H ₂ O	6.1 (3.6)	6.6 (3.4)
Primary organ failure, No. (%) Respiratory	96 (45.9)	99 (47.1)
Central nervous system	48 (22.9)	54 (25.7)
Cardiovascular	51 (24.4)	42 (20.0)
Renal	11 (5.3)	10 (4.8)
Coagulation	3 (1.4)	5 (2.4)
At randomization, mean (SD)		
SOFA score	10.1 (1.3) ^d	9.8 (1.5) ^e
Pao ₂ , mm Hg	76 (14) ^d	73 (13) ^f
FIO ₂	0.64 (0.10) ^d	0.68 (0.11) ^f
PEEP, cm H ₂ O	9.4 (1.2) ^f	9.3 (1.1) ^d

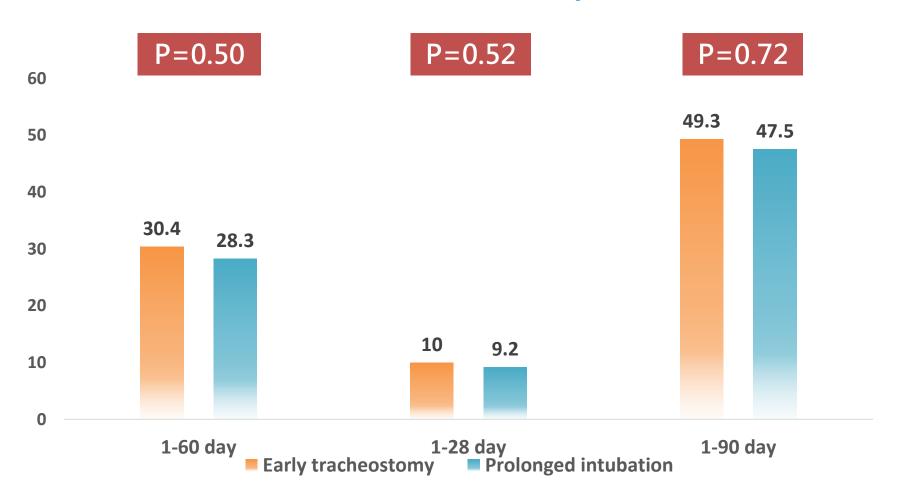
Early vs Late Tracheotomy in Mechanically Ventilated Adult ICU Patients Cumulative incidence of VAP

Early vs Late Tracheotomy in Mechanically Ventilated Adult ICU Patients Secondary Endpoints

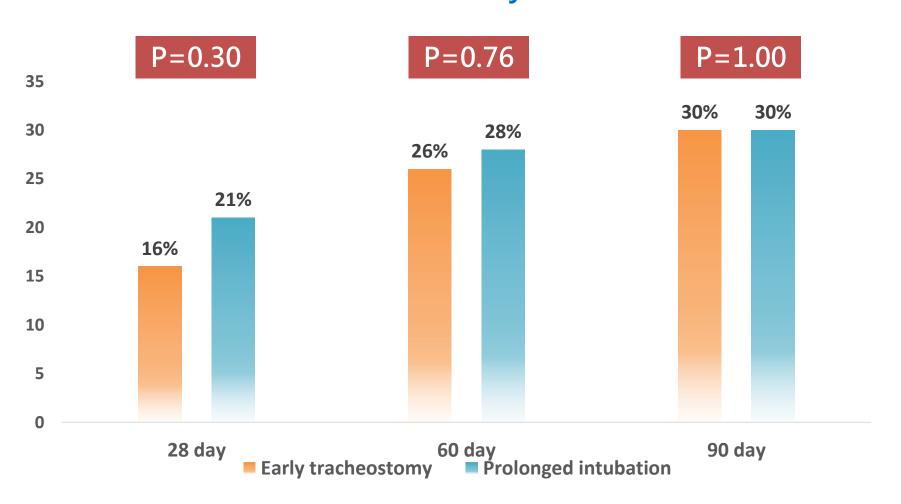

Early vs Late Tracheotomy in Mechanically Ventilated Adult ICU Patients Adverse Events Associated With Tracheotomy

	No. (%) o	f Patients
	Early Tracheotomy (n = 145)	Late Tracheotomy (n = 119)
Intraoperative	0 (4)	0.70
Minor bleeding	2 (1)	3 (3)
Significant bleeding	0	0
Tube dislocation	2 (1)	3 (3)
Hypoxemia	7 (5)	5 (4)
Arrhythmia	0	0
Cardiac arrest	0	0
Postoperative	00 (45)	10 (15)
Stoma inflammation	22 (15)	18 (15)
Stoma infection	9 (6)	7 (6)
Minor bleeding	8 (5)	6 (5)
Major bleeding	3 (2)	3 (3)
Pneumothorax	1 (<1)	0
Subcutaneous emphysema	1 (<1)	0
Tracheoesophageal fistula	0	1 (<1)
Cannula displacement or need for replacement	2 (1)	0
Total	57 (39)	46 (39)

^aComparisons between early and late tracheotomy were not statistically significant (χ^2 test or Fisher exact test).


Early Tracheotomy Versus Prolonged Intubation of Mechanically Ventilated Patients After Cardiac Surgery

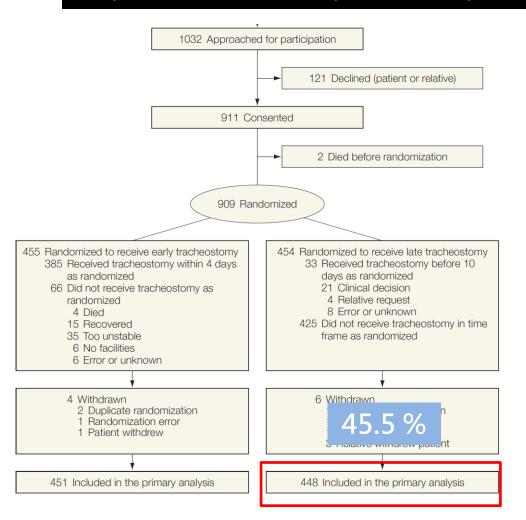
RCT, N=216 randomized, 1 center, June 2006 to March 2009



≤ 5days vs. >15 days

Early Tracheotomy Versus Prolonged Intubation of Mechanically Ventilated Patients After Cardiac Surgery Ventilator-free days

Early Tracheotomy Versus Prolonged Intubation of Mechanically Ventilated Patients After Cardiac Surgery Mortality



Early Tracheotomy Versus Prolonged Intubation of Mechanically Ventilated Patients After Cardiac Surgery Short-Term Outcomes

Variable	Early Percutaneous Tracheotomy (n = 109)	Prolonged Intubation (n = 107)	Mean Difference or Absolute Risk Difference (95% CI)	P Value
Sedation				
Mean duration of intravenous sedation (SD), d^{\ddagger}	6.4 (5.9)	9.6 (7.3)	−3.2 (−5.0 to −1.3)	0.007
Mean sedation-free days during 1–28 d (SD)	19.0 (9.1)	15.5 (9.3)	4.5 (1.2 to 6.9)	0.005
Mean cumulative sufentanil dose during 1–15 d (SD), $\mu g/kg$	4.0 (6.5)	10.2 (18.2)	−6.2 (−9.9 to −2.5)	0.001
Mean cumulative propofol dose during 1–15 d (SD), mg/kg	32.9 (60.2)	67.8 (116.7)	-34.9 (-60.1 to -9.8)	0.004
Mean cumulative midazolam dose during 1–15 d (SD), mg/kg	2.7 (4.7)	6.4 (14.3)	−3.7 (−6.6 to −0.8)	0.01
Mean days (during 1–15 d) of haloperidol therapy (SD)	1.9 (3.0)	3.2 (4.2)	−1.3 (−2.3 to −0.3)	0.01
Mean cumulative haloperidol dose during 1-15 d (SD), mg/kg	0.26 (0.51)	0.57 (0.92)	−0.3 (−0.5 to −0.1)	0.002
VAP after randomization, n (%)	50 (46)	47 (44)	2.0 (-11.3 to 15.2)	0.77
Sternal wound infection, n (%)	14 (13)	14 (13)	-0.2 (-9.2 to 8.7)	0.96
Bloodstream infection, n (%)	18 (17)	16 (15)	1.5 (-8.1 to 11.3)	0.85
Mean days (during 1–15 d) nurse-assessed as comfortable (SD)	11.8 (3.8)	10.4 (4.4)	1.4 (0.3 to 2.5)	0.01
Mean days (during 1–15 d) with nurse-assessed easy management (SD)	12.0 (3.8)	10.8 (4.4)	1.2 (0.05 to 2.3)	0.04
Received oral nutrition at 15 d, n (%)	91 (83)	57 (53)	30.2 (18.5 to 42.2)	< 0.001
Bed-to-chair transfer at 15 d, <i>n (%)</i>	72 (66)	47 (44)	22.1 (9.2 to 35.1)	0.002
Muscle strength assessment (SD)§				
14 d (<i>n</i> = 76, 68)	156.9 (87.0)	134.9 (92.8)	22.0 (-7.7 to 51.6)	0.15
28 d (<i>n</i> = 36, 36)	164.0 (86.1)	176.9 (85.6)	-12.9 (-53.3 to 27.5)	0.52
42 d (n = 21, 21)	170.1 (86.4)	195.4 (67.5)	-25.3 (-73.6 to 23.1)	0.30
56 d (n = 8, 11)	149.7 (70.4)	185.4 (76.0)	-35.7 (-108.0 to 36.6)	0.31

Early vs Late Tracheotomy in Mechanically Ventilated Adult ICU Patients The TracMan Randomized Trial

RCT, N=909 randomized, 72 UK ICUs, November 2004 to Jaunary 2011

 \leq 4days vs. \geq 10 days

Exclusion

Life-saving tracheostomy

Tracheostomy was contraindicated for anatomical or other reasons

Respiratory failure due to chronic neurological disease

27

Early vs Late Tracheotomy in Mechanically Ventilated Adult ICU Patients Baseline Characteristics of Patients

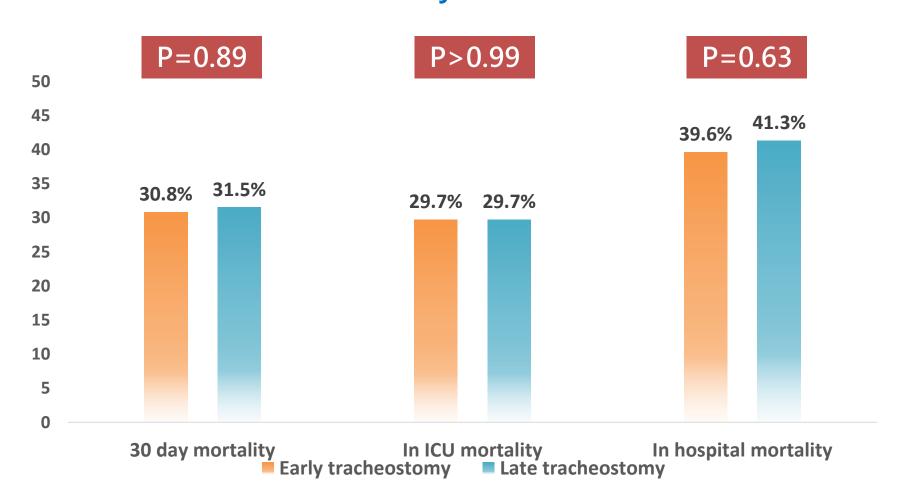
	No	o. (%) of Patie	nts
Treatment Group	Early (n = 451)	Late (n = 448)	Total (n = 899)
Men	263 (58.3)	264 (58.9)	527 (58.6)
Age, mean (SD), y ^a	63.6 (13.7)	64.2 (13.3)	63.9 (13.5)
Major clinical syndrome ^a Intracranial pathology	18 (4.0)	17 (3.8)	35 (3.9)
Altered consciousness level due to drug or metabolic causes	17 (3.8)	19 (4.2)	36 (4.0)
Peripheral nervous system or muscular disorder or weakness	7 (1.6)	6 (1.3)	13 (1.4)
Pulmonary pathology ^d	311 (69.0)	312 (69.6)	623 (69.3)
Burns	0 (0.0)	1 (0.2)	1 (0.1)
Decompensated (congestive) heart failure	8 (1.8)	6 (1.3)	14 (1.6)
Other	90 (20.0)	87 (19.4)	177 (19.7)
APACHE II score, mean (SD) ^b	19.6 (6.5)	20.1 (6.0)	19.8 (6.3)
Admission type Medical	359 (79.6)	353 (78.8)	712 (79.2)
Surgical	92 (20.4)	95 (21.2)	187 (20.8)
Emergency	36 (39.1)	40 (42.1)	76 (40.6)
Urgent	32 (34.8)	32 (33.7)	64 (34.2)
Scheduled	8 (8.7)	8 (8.4)	16 (8.6)
Elective	16 (17.4)	15 (15.8)	31 (16.6)

Early vs Late Tracheotomy in Mechanically Ventilated Adult ICU Patients Details of the Tracheostomies Performed

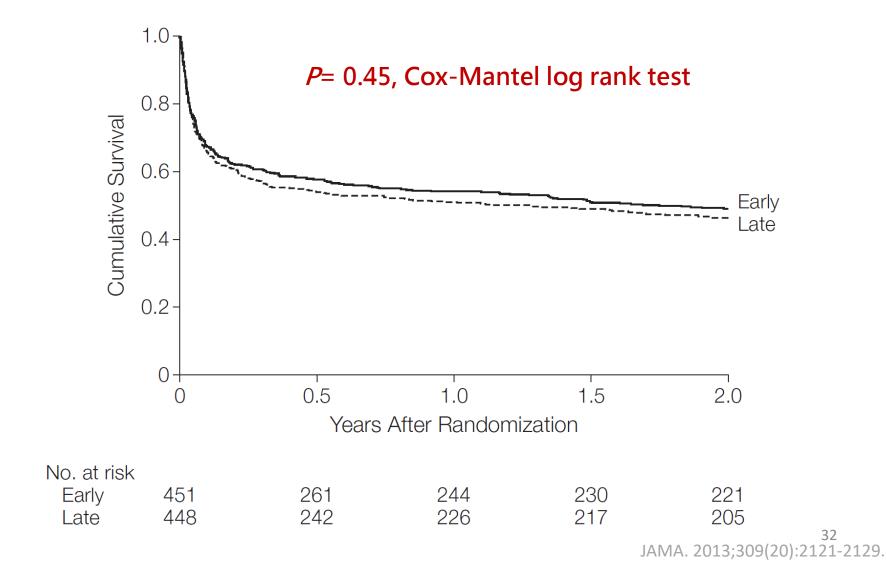
		No. (%) of Patients	
Treatment Group	Farly (n = 418)a Late (n = 204)a 222 (53.1) 116 (56.9) 133 (31.8) 47 (23.0) 46 (11.0) 27 (13.2) 16 (3.8) 11 (5.4) tly 387 (92.6) 179 (89.1) 27 (6.5) 19 (9.5) 2 (0.5) 1 (0.5) 2 (0.5) 2 (1.0) 37 (8.9) 25 (12.3) 3 (0.7) 2 (1.0) 1 (0.2) 2 (1.0) 377 (90.2) 174 (85.7) 295 (78.2) 131 (75.3) 37 (9.8) 21 (12.1) 8 (2.1) 4 (2.3) 1 (0.3) 3 (1.7) 36 (9.5) 15 (8.6) 30 (20-45) 30 (20-45) 49 (30-74) 45 (37-73)	Total (n = 622) ^a	
Grade of clinician performing tracheostomy ^b Attending/specialist physician	222 (53.1)	116 (56.9)	338 (54.3)
Resident	133 (31.8)	47 (23.0)	180 (28.9)
House officer/junior resident	46 (11.0)	27 (13.2)	73 (11.7)
Staff grade/associate specialist/fellow	16 (3.8)	11 (5.4)	27 (4.3)
Grade of most senior clinician actively involved in, or directly supervising the tracheostomy procedure ^b Attending/specialist physician	387 (92.6)	179 (89.1)	566 (91.4)
Resident	27 (6.5)	19 (9.5)	46 (7.4)
House officer/junior resident	2 (0.5)	1 (0.5)	3 (0.5)
Staff grade/associate specialist/fellow	2 (0.5)	2 (1.0)	4 (0.6)
Type of procedure ^b Surgical Operating theater	37 (8.9)	25 (12.3)	62 (10.0)
Bedside	3 (0.7)	2 (1.0)	5 (0.8)
Percutaneous Operating theater	· /	\ /	3 (0.5)
Bedside	377 (90.2)	174 (85.7)	551 (88.7)
Percutaneous technique Single-tapered dilator	295 (78.2)	131 (75.3)	426 (77.3)
Multiple dilator technique	37 (9.8)	21 (12.1)	58 (10.5)
Dialating forceps technique	8 (2.1)	4 (2.3)	12 (2.2)
Threaded dilator	1 (0.3)	3 (1.7)	4 (0.7)
Other ^C	36 (9.5)	15 (8.6)	51 (9.3)
Duration of procedure, median (IQR), min ^b All procedures	30 (20-45)	30 (20-45)	30 (20-45)
Surgical	49 (30-74)	45 (37-73)	45 (31-73)
Percutaneous	30 (20-40)	30 (20-40)	30 (20-40)

Early vs Late Tracheotomy in Mechanically Ventilated **Adult ICU Patients Primary Outcome and Secondary Mortality Outcome**

	No.	(%) of Patients [959	% CI]	Absolute Risk	5.1 5	P Value	
	Early (n = 451)	Late (n = 448)	Total (n = 899)	Reduction for Early vs Late (95% CI), %	Relative Risk for Early vs Late (95% CI)	for Fisher Exact Test	
Status at 30 d (primary outcome) Died	139 (30.8) [26.7 to 35.2]	141 (31.5) [27.3 to 35.9]	280 (31.2) [28.2 to 34.3]	0.7 (-5.4 to 6.7)	0.98 (0.81 to 1.19)	.89	
Status at ICU discharge ^a No. of patients	448	445	893				
Died	133 (29.7) [25.6 to 34.1]	132 (29.7) [25.6 to 34.1]	265 (29.7) [26.8 to 32.8]	0.0 (-6.0 to 6.0)	1.00 (0.82 to 1.22)	>.99	
Status at hospital discharge b No. of patients	424	436	860				
Died	168 (39.6) [35.1 to 44.4]	180 (41.3) [36.8 to 46.0]	348 (40.5) [37.2 to 43.8]	1.7 (-4.9 to 8.2)	0.96 (0.82 to 1.13)	.63	
Status at 1 y ^c No. of patients	451	443	894				
Died	207 (45.9) [41.4 to 50.5]	217 (49.0) [44.4 to 53.6]	424 (47.4) [44.2 to 50.7]	3.1 (-3.5 to 9.6)	0.94 (0.82 to 1.08)	.38	
Status at 2 y ^d No. of patients	451	443	894				
Died	230 (51.0) [46.4 to 55.6]	238 (53.7) [49.1 to 58.3]	468 (52.3) [49.1 to 55.6]	0.7 (-3.8 to 9.3)	0.95 (0.84 to 1.08)	.42	
Abbreviation: ICLL intensive care unit		-					


Abbreviation: ICU, intensive care unit.

^aStatus at critical care unit discharge not available for 6 patients (3 early, 3 late).


b Status at hospital discharge not available for 39 patients (27 early, 12 late). Status at 1 y not available for 5 patients (5 late).

d Status at 2 v not available for 5 patients (5 late).

Early vs Late Tracheotomy in Mechanically Ventilated Adult ICU Patients Mortality Outcome

Early vs Late Tracheotomy in Mechanically Ventilated Adult ICU Patients 2 Years After Randomization

Early versus late tracheostomy for critically ill patients Mortality

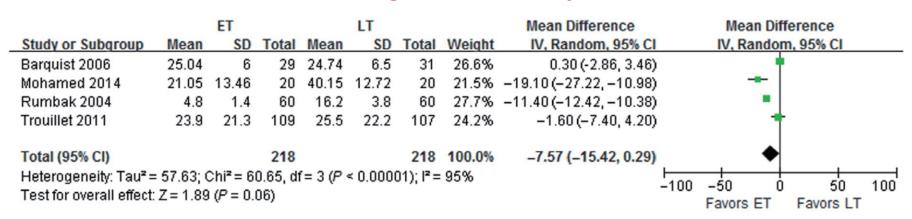
Systemic review and meta-analysis, 9 RCTs, 2,040 patients

	ET		LT			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI
Barquist 2006	2	29	5	31	1.6%	0.43 (0.09, 2.03)	
Blot 2008	21	61	20	62	6.4%	1.07 (0.65, 1.76)	· +
Mohamed 2014	8	20	8	20	2.6%	1.00 (0.47, 2.14)	·
Rumbak 2004	19	60	37	60	11.9%	0.51 (0.34, 0.78)	,
Saffle 2002	4	21	6	23	1.8%	0.73 (0.24, 2.23)	· - +
Terragni 2010	55	209	66	210	21.1%	0.84 (0.62, 1.13)	,
Trouillet 2011	17	109	23	107	7.4%	0.73 (0.41, 1.28)	·
Young 2013	139	451	141	448	45.4%	0.98 (0.81, 1.19)	•
Zheng 2012	8	58	6	61	1.9%	1.40 (0.52, 3.80)	·
Total (95% CI)		1018		1022	100.0%	0.88 (0.76, 1.00)	•
Total events	273		312				
Heterogeneity: Chi ² =	10.42, df	= 8 (P =	= 0.24); 12	= 23%			0.01 0.1 1 10 100
Test for overall effect:	Z=1.91	P = 0.0	16)				Favors ET Favors LT

Early versus late tracheostomy for critically ill patients Ventilator-associated pneumonia

Systemic review and meta-analysis, 9 RCTs, 2,040 patients

	ET		LT			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Barquist 2006	28	29	28	31	18.9%	1.07 (0.93, 1.22)	•
Blot 2008	30	61	31	62	14.2%	0.98 (0.69, 1.40)	+
Mohamed 2014	4	20	8	20	4.5%	0.50 (0.18, 1.40)	
Rumbak 2004	3	60	15	60	3.6%	0.20 (0.06, 0.66)	
Saffle 2002	21	21	22	23	19.1%	1.04 (0.92, 1.18)	†
Terragni 2010	30	209	44	210	12.7%	0.69 (0.45, 1.05)	
Trouillet 2011	50	109	47	107	15.6%	1.04 (0.78, 1.40)	+
Zheng 2012	17	58	30	61	11.6%	0.60 (0.37, 0.96)	
Total (95% CI)		567		574	100.0%	0.84 (0.66, 1.08)	•
Total events	183		225				
Heterogeneity: Tau ² =	0.08; Chi	i² = 38.7	75, df = 7	$(P \le 0.$	00001); P	²= 82%	0.01 0.1 1 10 100
Test for overall effect:	Z=1.36	(P = 0.1)	7)				Favors ET Favors LT


Early versus late tracheostomy for critically ill patients

Systemic review and meta-analysis, 9 RCTs, 2,040 patients

Duration of mechanical ventilation

		ET			LT			Mean Difference		Mean D	iffer	ence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Rando	om, 9	95% CI	
Mohamed 2014	20.6	13.03	20	32.2	10.52	20	22.1%	-11.60 (-18.94, -4.26)		-	-		
Rumbak 2004	7.6	4	60	17.4	5.3	60	26.7%	-9.80 (-11.48, -8.12)					
Saffle 2002	35.5	4.5	21	31.4	5.2	23	26.1%	4.10 (1.23, 6.97)					
Trouillet 2011	17.9	14.9	109	19.3	16.9	107	25.1%	-1.40 (-5.65, 2.85)			•		
Total (95% CI)			210			210	100.0%	-4.46 (-12.61, 3.69)		•			
Heterogeneity: Tau ² =	64.13; (Chi² = 7	4.05, dt	$f = 3 (P \cdot$	< 0.000	01); l²=	96%		-100	-5 0	 		100
Test for overall effect:	Z = 1.07	P=0.	28)						-100	Favors ET	F	avors LT	100

Length of ICU stay

Early versus late tracheostomy for critically ill patients Duration of sedation

Systemic review and meta-analysis, 9 RCTs, 2,040 patients

	ET LT					Mean Difference		Mean Dit	ference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% C	1	IV, Rando	m, 95% CI	
Rumbak 2004	3.2	0.4	60	14.1	2.9	60	33.7%	-10.90 (-11.64, -10.18	i)			
Trouillet 2011	6.4	5.9	109	9.6	7.3	107	32.7%	-3.20 (-4.97, -1.43)			
Zheng 2012	7.16	2.35	58	10.95	2.3	61	33.6%	-3.79 (-4.63, -2.95)	•		
Total (95% CI)			227				100.0%	-5.99 (-11.41, -0.57)	. •		
Heterogeneity: Tau ² = Test for overall effect:				, df = 2 ((P < 0	1.00001); I² = 999	6	-100	-50 0	50 Favors LT	100

Early versus late tracheostomy for critically ill patients Mortality in the ICU

Systemic review and meta-analysis, 13 RCTs, 2,434 patients

	Early tra	acheostomy	Late or	no tracheostomy	Weight					Odds ratio, random (95%	CI)
	Deaths	Total	Deaths	Total						random (55%	Cij
Young et al 2013 ³	133	448	132	445	16.7%			+		1.00 (0.75–1.3)	3)
Bösel et al 2013 ¹⁵	3	30	14	30	3.9%			_		0.13 (0.03-0.53	1)
Koch et al 2012 ¹⁶	9	50	7	50	5.8%				_	1.35 (0.46-3.9	6)
Zheng et al 2012 ¹⁷	8	58	6	61	5.5%					1.47 (0.48-4.5	2)
Trouillet et al 2011 ⁴	24	109	26	107	10.7%			-		0.88 (0.47-1.6	6)
Terragni et al 2010 ⁵	55	209	66	210	14.3%					0.78 (0.51-1.19	9)
Blot et al 2008 ¹⁹	12	61	15	62	7.8%					0.77 (0.33-1.81	L)
Barquist et al 2006 ²⁰	2	29	5	31	2.8%					0.39 (0.07-2.1)	6)
Bouderka et al 2004 ²¹	12	31	7	31	5.6%			+-		2.17 (0.71-6.57	7)
Rumbak et al 2004 ²²	19	60	37	60	9.1%		_			0.29 (0.14-0.6	1)
Saffle et al 2002 ²³	4	21	6	23	3.8%		_			0.67 (0.16-2.79	9)
Sugerman et al 1997 ²⁴	13	53	11	59	7.3%				_	1.42 (0.57-3.53	1)
Rodriguez et al 1990 ²⁵	9	51	13	55	6.9%					0.69 (0.27-1.79	9)
Total		1210		1224	100.0%					0.80 (0.59-1.0)9)
Total deaths	303		345					Ĭ			
						0.01	0.1	1.00	10	100	
							Favours earl	y Fa	avours late or	no	

Early versus late tracheostomy for critically ill patients Ventilator associated pneumonia

Systemic review and meta-analysis, 13 RCTs, 2,434 patients

	Early tracheostomy		Early tracheostomy Late or no tracheosto		Weight		Odds ratio, random (95% CI)
	Events of pneumonia	Total	Events of pneumonia	Total			(33% с.,
Koch et al 2012 ¹⁶	19	50	32	50	9.5%		0.35 (0.15-0.78)
Zheng et al 2012 ¹⁷	17	58	30	61	10.0%		0.43 (0.20-0.91)
Trouillet et al 2011 ⁴	50	109	47	107	12.2%		1.08 (0.63-1.85)
Bylappa et al 2011 ¹⁸	3	22	13	22	4.9%		0.11 (0.02-0.48)
Terragni et al 2010 ⁵	30	209	44	210	12.4%		0.63 (0.38-1.05)
Blot et al 2008 ¹⁹	30	61	31	62	10.5%	-	0.97 (0.48-1.96)
Barquist et al 2006 ²⁰	28	29	28	31	2.5%		3.00 (0.29–30.62)
Bouderka et al 2004 ²¹	18	31	19	31	7.7%		0.87 (0.32-2.41)
Rumbak et al 2004 ²²	3	60	15	60	5.8%		0.16 (0.04-0.58)
Saffle et al 2002 ²³	21	21	22	23	1.4%		2.87 (0.11-74.28)
Sugerman et al 1997 ²⁴	26	53	32	59	10.1%		0.81 (0.39-1.71)
Rodriguez et al 1990 ²⁵	40	51	53	55	4.6%		0.14 (0.03-0.65)
Dunham & LaMonica 1984 ²⁶	20	34	20	40	8.5%	 -	1.43 (0.57-3.59)
Total		788		811	100.0%	•	0.60 (0.41-0.90)
Total events of pneumonia	305		386			·	
						0.01 0.1 1.00 10	100
						Favours early Favours late	e or no

LET'S PK

PDT vs.
Surgical
Tracheostomy

Outcomes and charges

RCT, 80 patients, 1 center in US, July 1997 and April 1999

Table 2. Outcomes comparing PDT with ST

	PDT	ST	p Value
Procedure time (mins) Days intubated ICU LOS (days) Hospital LOS (days)	20.1 ± 2.0 12.7 ± 1.2 24.5 ± 2.5 46.7 ± 4.2	41.7 ± 4.0 15.6 ± 1.9 28.4 ± 3.1 43.8 ± 3.5	<.0001 .20 .33 .16

PDT, percutaneous dilational tracheostomy; ST, surgical tracheostomy; ICU, intensive care unit; LOS, length of stay. Values are mean \pm SE.

Table 3. Patient charges comparing PDT and ST

	PDT	ST	p Value
Total charges Supply charges Professional charges	$\$1,569 \pm 156 \$688 \pm 103 \$880 \pm 54$	$\$3,172 \pm 114 \\ \$1,526 \pm 87 \\ \$1,647 \pm 50$	<.0001 <.0001 <.0001

PDT, percutaneous dilational tracheostomy; ST, surgical tracheostomy. Values are mean \pm SE.

Clinical demography data

RCT, 83 patients, Taipei VGH, May 1997 and April 1998

		No. of patients
Mean Age (years):	68.8 ± 14.9)
Sex (male: female):	64:19	
Days of pre-tracheostomy		
endotracheal intubation (days):	24.1 ± 15.9)
Diagnosis:		
Abdominal sepsis		15
Respiratory failure, ARDS		14
Cerebral vascular accident		10
Head injury		6
Multiple trauma		5
Post-op. respiratory failure		15
Pneumonia		8
Soft tissue infection & sepsis		5
Post-cardiac arrest with hypoxia	,	4
Drug overdose		1
Total		83

RCT, 83 patients, Taipei VGH, May 1997 and April 1998

		· -	
	PDT group $(n = 41)$	OT group $(n = 42)$	<i>p</i> value
Mean age (years)	72.0 ± 14.4	65.6 ± 14.8	0.053°
Sex (male: female)	31:10	33:9	
Days of pre-tracheostomy intubation (days)	21.5 ± 14.6	26.7 ± 17.0	0.139°
Operation time (minutes)	22.0 ± 12.1	41.5 ± 5.9	< 0.001 °
Alive**	14	17	
Dead**	27*	25*	
Decannulation	15 ^a	12 ^b	
Op. mortality	0	0	
Complication rate	17%	19%	

^{*} There is no difference in mortality by Chi-square with Yate's correction.

^{**} Follow up till the end of Dec. 2000.

^a One patient died of myocardiac infarction one month later after decannulation.

^b Five patients are still on tracheostomy by the end of follow up in Dec. 2000.

^c Independent t test.

Operative complications

RCT, 83 patients, Taipei VGH, May 1997 and April 1998

	Complications	No. of	Cases
		PDT group	OT group
Perioperative	Premature extubation of	2	0
	translaryn geal tube		
	Bleeding not requiring transfusion	1	1
	Instrument failure	1	0
Early	Bleeding/hemorrhage from wound	2	3
-	Wound infection & granuloma	1	3
Late	Tracheal malacia	0	1
Γotal		7	8

^{*} There is no difference between groups PDT and OT in complication by Chi-square with Yate's correction.

Perioperative variables

RCT, 200 patients, Australia, September 1997 to August 2001

	Intention to Treat			
	Percutaneous $(n = 100)$	Surgical (n = 100)	p Value	
Dandamination to mucachuse bush	2 9 (2 () 11 2)	62(25,96)	0.06	
Randomization to procedure, hrs ^a	3.8 (2.0–11.2)	6.3 (3.5–8.6)	.006	
Anesthesia to procedure, mins ^a	15 (10–20)	13 (10–15)	.008	
Duration of procedure, mins ^a	20 (15–30)	17 (15–20)	.58	
Lowest Spo ₂ during procedure, % ^a	99 (98–100)	99 (98–99)	.003	
Paco ₂ before TT insertion, torr ^a	43 (38–50)	48 (40–54)	.065	
Patients with $Paco_2 > 50$ before TT insertion, torr	18	32	.024	
Paco ₂ before procedure, torr ^a	50 (44–52)	52 (46–59)	.33	
Size of tracheostomy tube, $mm^{a,b}$	8.0 (8.0–9.0)	9.0 (8.0–9.0)	<.0001	

Randomization to procedure, time from randomisation to procedure; anesthesia to procedure, time from start of anesthesia to start of procedure; Spo_2 , pulse oximetry; TT, tracheostomy tube.

^aValues expressed as median with interquartile range; ^binternal diameter.

Peri- and postoperative complications

RCT, 200 patients, Australia, September 1997 to August 2001

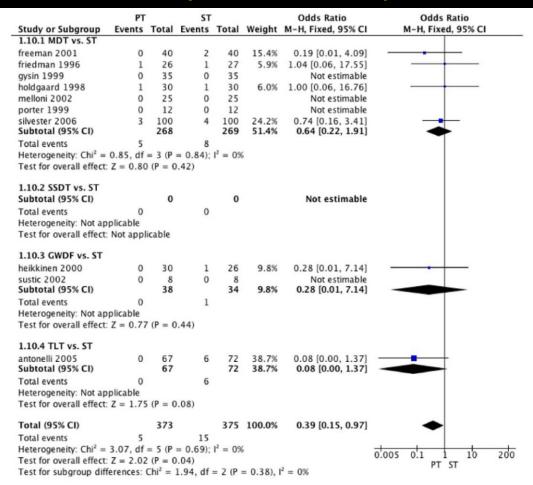
	Intention to Treat				
	Percutaneous (n = 100)	Surgical (n = 100)	Total (n = 200)	p Value	
Operative					
Bleeding: operative					
Minimal	96	99	195		
Moderate	1	1	2)	
Severe	3	0	3) .20	
Pneumothorax	1	0	1)	
Accidental	0	1	1)	
decannulation					
Postoperative					
Bleeding: first 3 days					
Zero	67	64	131)	
Minimal	23	30	53)	
Moderate	4	1	5) .12	
Severe	3	4	7)	
Infection: day 3					
Zero	92	91	183)	
Minimal	3	4	7) .15	
Moderate	1	1	2)	
Severe	0	0	0)	
Infection: day 7					
Zero	90	80	170)	
Minimal	3	9	12) .044	
Moderate	1	5	6)	
Severe	0	0	0)	
Aggregate of significant complications ^a	14	13	27	NS	

NS, not significant.

^aDefined in data analysis.

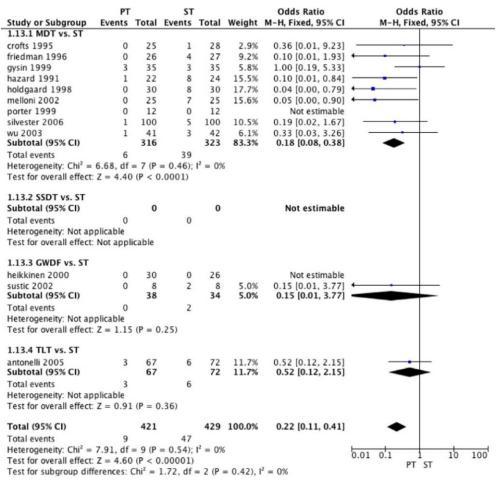
Outcomes at hospital discharge

RCT, 200 patients, Australia, September 1997 to August 2001


	Intention to Treat			
	Percutaneous (n = 100)	Surgical (n = 100)	p Value	
Tracheostomy outcome				
Tube removed	78	74)	
Discharged with tracheostomy	7	8) .80	
Died with tracheostomy	15	18)	
Decannulated patients				
Tracheostomy period, days ^a	19 (11–28)	21 (11–27)	.71	
Dressing period, days ^a	6 (3–9)	7 (4–11)	.47	
Infection when removed				
Zero	57	49)	
Minimal	4	12) .079	
Moderate	3	5)	
Severe	0	0)	
Death in ICU	9	6	.59	
Death in hospital	26	23	.74	

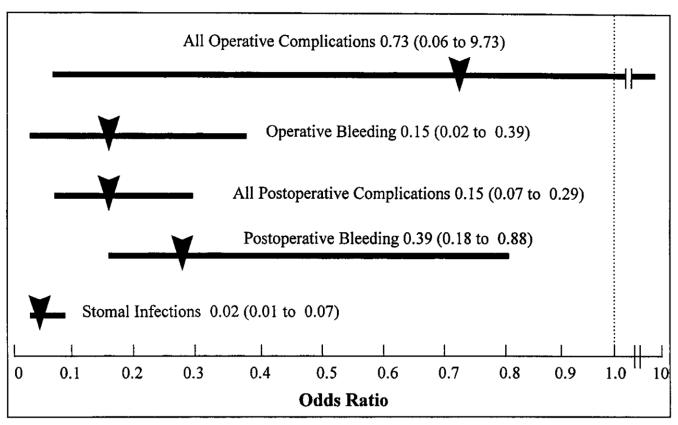
Tube removed, tracheostomy tube removed in hospital; tracheostomy period, duration tracheostomy tube *in situ*; dressing period: time that dressing was required after tracheostomy removal; ICU, intensive care unit.

^aValues expressed as median with interquartile range.


Percutaneous tracheostomy versus surgical tracheostomy in critically ill patients Major postprocedure bleeding

Meta-analysis, 14 RCTs, 973 patients

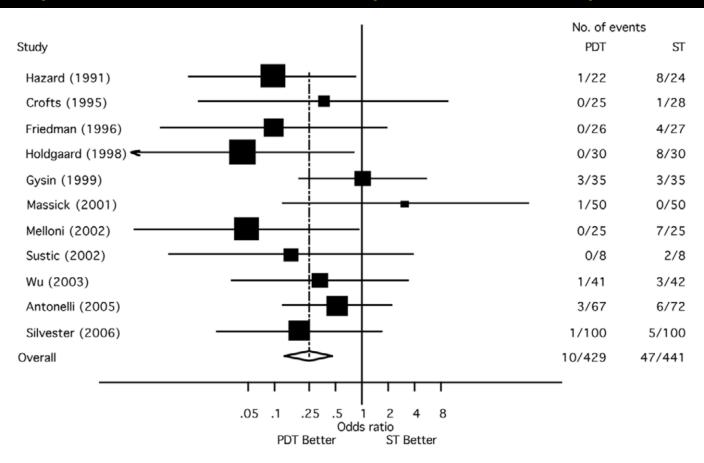
Percutaneous tracheostomy versus surgical tracheostomy in critically ill patients Stomal infection


Meta-analysis, 14 RCTs, 973 patients

Percutaneous dilatational tracheostomy versus surgical tracheostomy in critically ill patients

Operative and postoperative complications

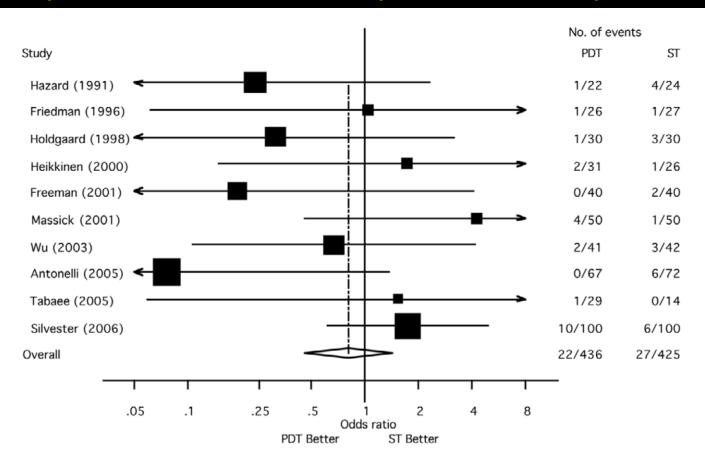
Meta-analysis, 5 RCTs, 236 patients


Operative time PDT vs. surgical

Absolute difference with 95% CI, 9.84 min (7.83 to 10.85 min)

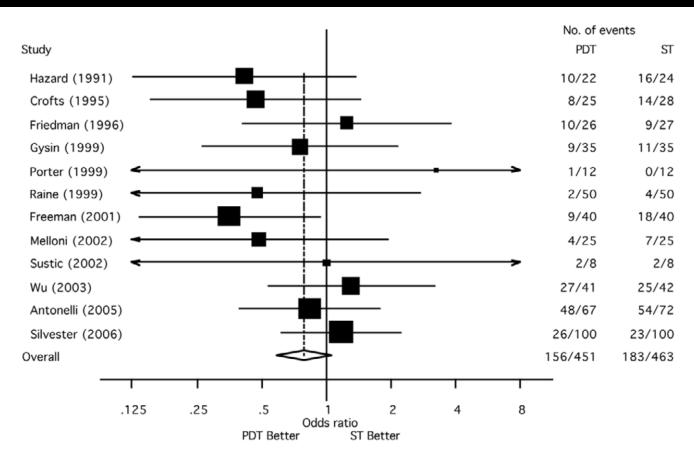
Percutaneous dilatational tracheostomy versus surgical tracheostomy in critically ill patients

Incidence of wound infection

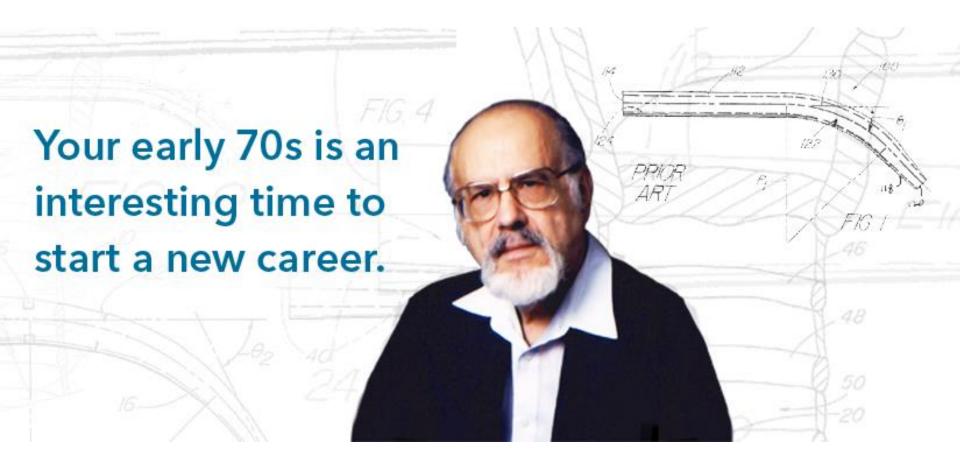

Systemic review and meta-analysis, 17 RCTs, 1,212 patients

Pooled estimate of OR = 0.28 (95% CI 0.16 to 0.49, p<0.0005)

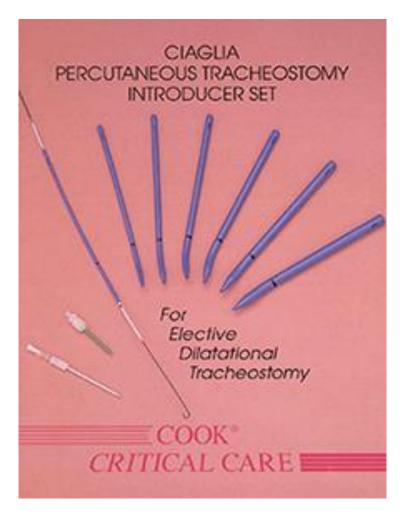
Percutaneous dilatational tracheostomy versus surgical tracheostomy in critically ill patients Incidence of significant bleeding

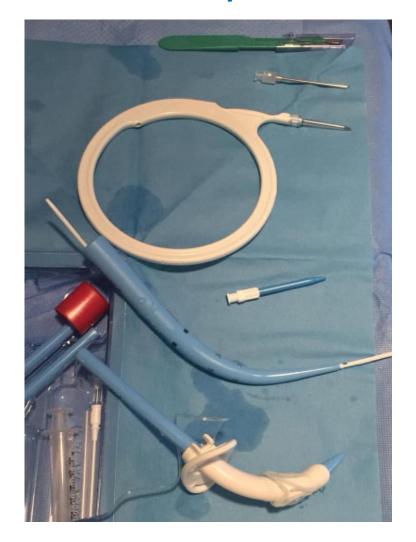

Systemic review and meta-analysis, 17 RCTs, 1,212 patients

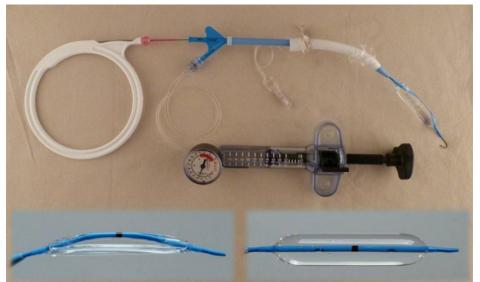
Pooled estimate of OR = 0.80 (95% CI 0.46 to 1.41) p=0.44


Percutaneous dilatational tracheostomy versus surgical tracheostomy in critically ill patients Incidence of mortality

Systemic review and meta-analysis, 17 RCTs, 1,212 patients

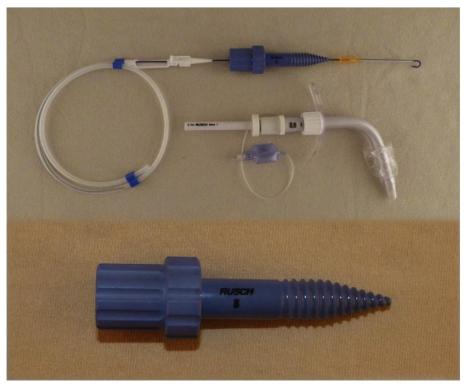

Pooled estimate of OR = 0.79 (95% CI 0.59 to 1.07, p=0.13)


1985 A New Simple Bedside Procedure Percutaneous dilational tracheostomy



Pasquale Ciaglia

1985 A New Simple Bedside Procedure Percutaneous dilational tracheostomy



Blue Dolphin balloonassisted dilation system

PercuTwist" screw-like dilation system

Griggs percutaneous Technique set

Int J Res Med Sci. 2015 Mar;3(3):38-742. Clin Chest Med 34 (2013) 515–526.

Absolute Contraindications for Percutaneous Tracheostomy

Absolute contraindications to consider:

- Patient age younger than 8 years
- Necessity of emergency airway access because of acute airway compromise
- Gross distortion of the neck anatomy due to the following:

Hematoma

Tumor

Thyromegaly

High innominate artery

Relative Contraindications for Percutaneous Tracheostomy

Relative contraindications to consider:

- Patient obesity with short neck that obscures neck landmarks
- Medically uncorrectable bleeding diatheses
- Prothrombin time or activated partial thromboplastin time >
 1.5 times the reference range
- Platelet count < 50,000/μL
- Bleeding time > 10 min
- Need for positive end-expiratory pressure > 20 cm H₂O
- Evidence of infection in the soft tissues of the neck at the prospective surgical site

A comprehensive multidisciplinary tracheostomy team

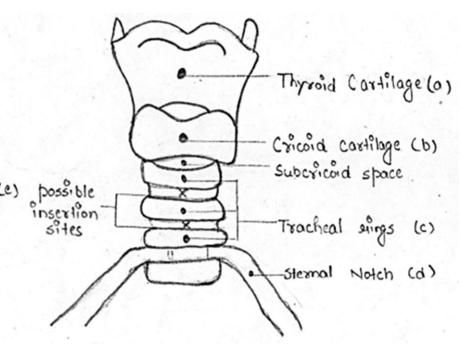
Physician to manage airway and bronchoscope

Physician to perform the tracheostomy tube insertion

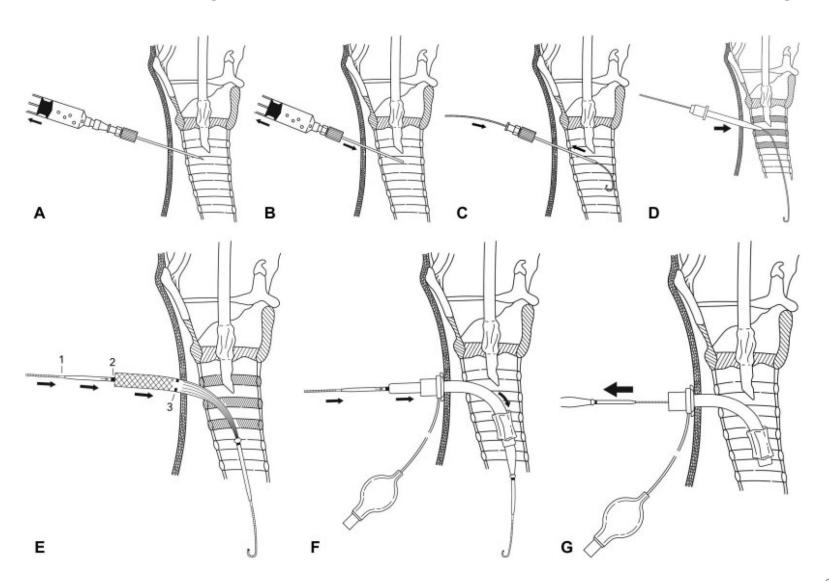
Respiratory therapist

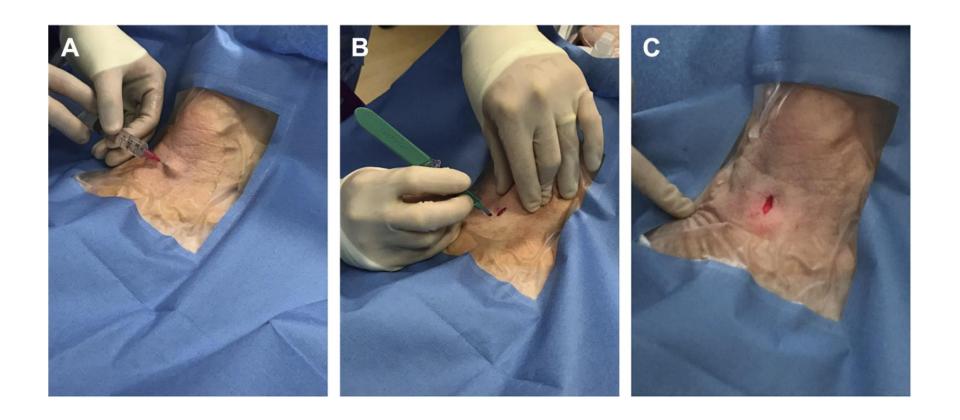
Tracheostomy coordinator

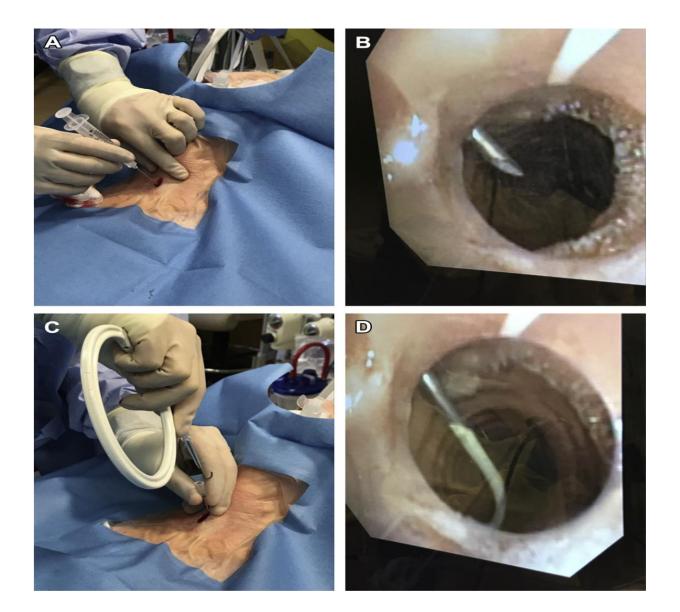

Nurse

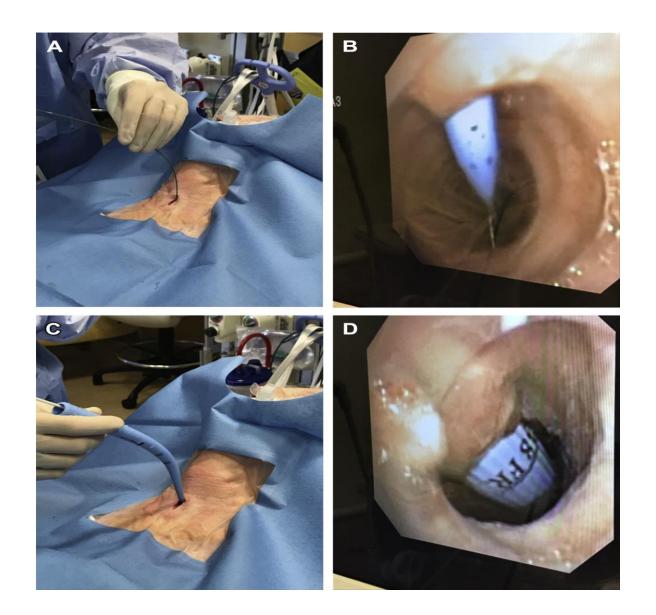

Speech-language pathologist

Complications of Percutaneous Tracheostomy

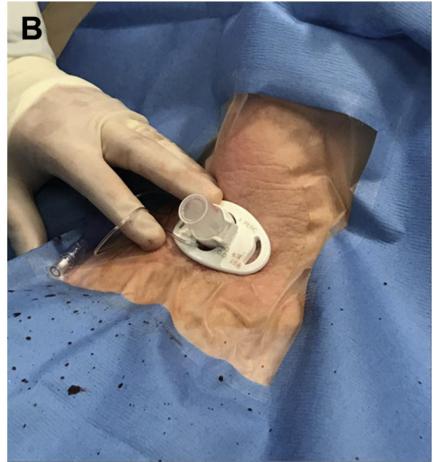

Immediate	Early	Late
Bleeding	Tracheal ring fracture	Subglottic stenosis
Loss of airway	Tracheal tube obstruction	Unplanned decannulation
Hypoxia	Paratracheal placement	Tracheoinnominate artery bleed
Pneumothorax	Posterior tracheal wall injury	Displaced tracheal tube
False tract	Pneumothorax/pneumomediastinum	Delayed healing after decannulation
Pneumomediastinum	Surgical emphysema	Tracheoesophageal fistula
Posterior tracheal wall injury	Atelectasis	Stromal infection
Esophageal injury	Raised intracranial pressure	Scarring of the neck
Surgical emphysema		Swallowing difficulty
Needle damage to bronchoscope		Permanent voice changes
Raised intracranial pressure		

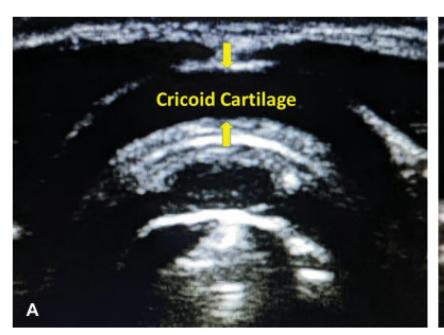

Percutaneous dilational tracheostomy Preoperative landmarks

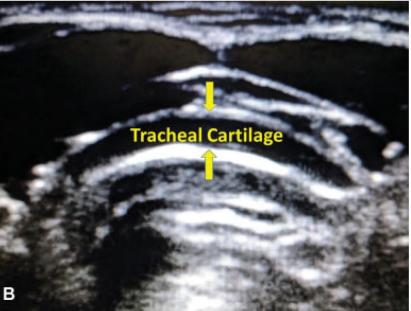


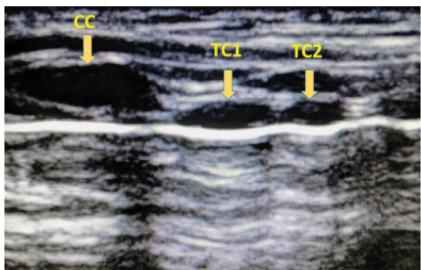


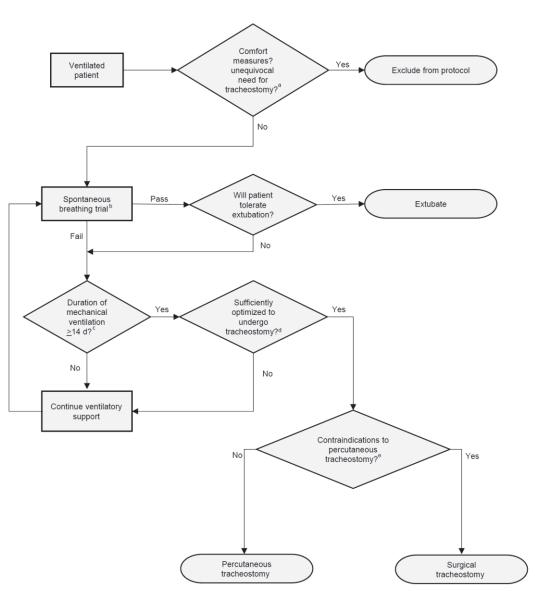
Schematic drawings of Ciaglia single tapered dilator method of percutaneous dilational tracheostomy

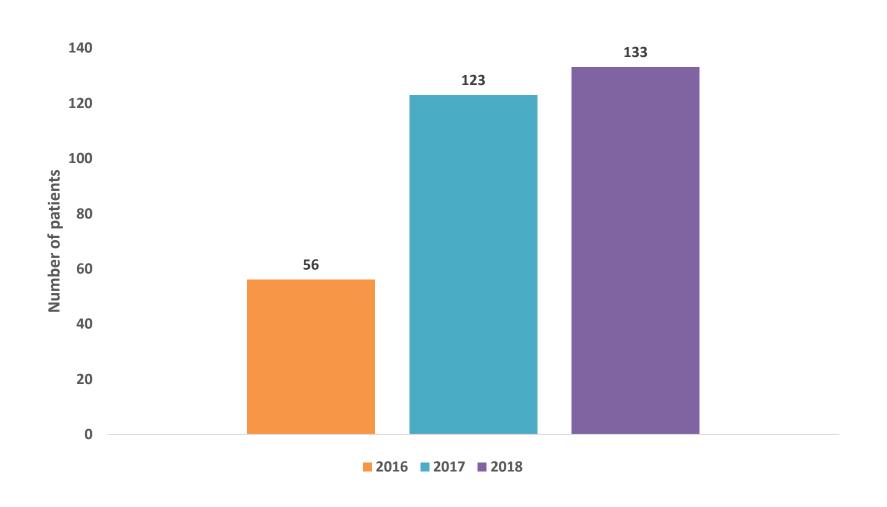


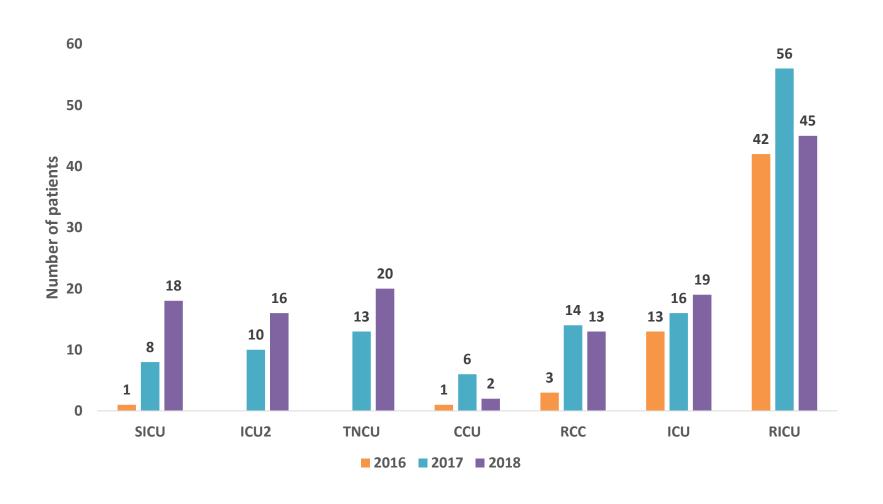


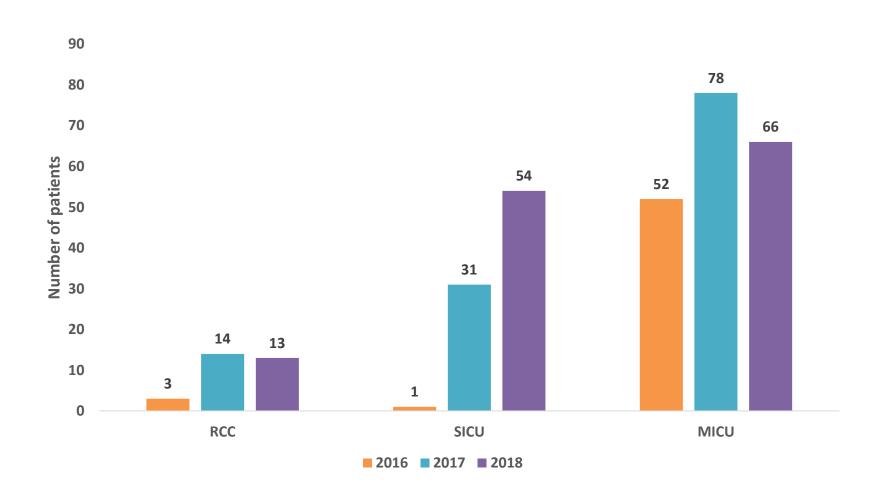


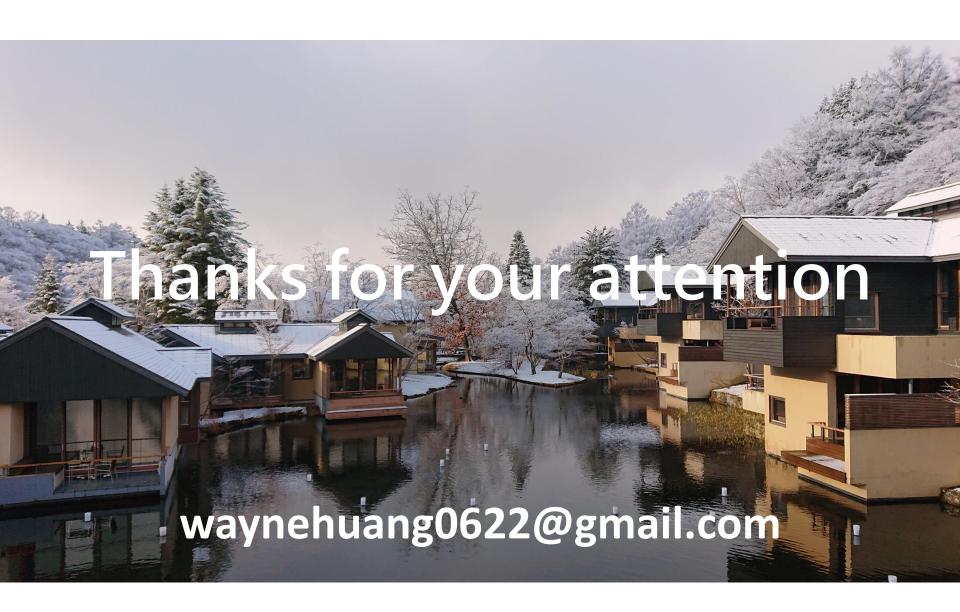



Ultrasound guided percutaneous tracheostomy




Tracheostomy decision-making protocol


The Experience of PDT in VGHTC



The Experience of PDT in VGHTC

The Experience of PDT in VGHTC

