Electric impedance tomography guided-PEEP titration for ARDS
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Acute, or Exudative, ﬁhase (Panels A and C) Fibrosing-Alveolitig Phase (Panels B and D)

- -
.I. .

Ware LB, Matthay MA. N Engl J Med 2000;342:1334-1349.
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Prone Position Therapy

La Presse Médicale
Volume 40, Issue 12, Part 2, December 2011, Pages €585-



The open, non-dependent lung mass (at 50% of the sternum-vertebra distance) is
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o) Healthy - ARDS

Normal ventilation Normal ventilation
: o Low perfusion:
Vascular obstruction
Vasoconstrictors
Oedema/infiltration
(Micro)thrombosis

Pulmonary Pulmanaryé

Hypoventilation

artery vein
HPV e Increased perfusion:
Impaired HPV
. Redistribution from
Alveolar low perfusion areas Atelectasis
hypoventilation i
{ V/Q matching ] [ V/Q mismatch ]

Eur Respir Rev 2021; 30: 210059 8



Supine Prone

Non-Dependent
i) ARDS i) PEEP
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Course of Pﬂﬂlf Fil:l1 during four consecutive 24-hour
periods of prone positioning
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RotoProne Therapy System Overview
Prone Chest Pack Tube Maragement System
See picture on page 3-10)

Prone Abdominal Pack

Prone Ugper Leg Pack

Prone Lower Leg Pack
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The amount of recruitable tissue increases with

ARDS severity.
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CONFERENCE REPORTS AND EXPERT PANEL

ESICM guidelines on acute respiratory
distress syndrome: definition, phenotyping
and respiratory support strategies

Ventilator Recruitment Maneuvers (RMs)

Definition:
Temporary increase in airway and transpulmonary pressure above tidal ventilation levels.
Goal: Promote re-aeration of previously collapsed lung regions (lung recruitment).

Mechanism:

IlDressur.e during RMs typically exceeds closing pressure, aiding in the reopening of collapsed
ung units.

Benefits:
Increased End-Expiratory Lung Volume: Achieved after RM, potentially durable.
Improved Gas Exchange: Enhances oxygenation and CO2 removal.
Homogenization of Alveolar Distension: Promotes uniform lung expansion.
Decreased Lung Stress and Strain: Reduces risk of ventilator-induced lung injury.
Considerations:
Variability in occurrence and durability of effects.

16
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ESICM guidelines on acute respiratory =

distress syndrome: definition, phenotyping

and respiratory support strategies

Risks of High-Pressure Maneuvers:

* Over-Distension Complications:
* Barotrauma
* Reduced venous return
* Increased pulmonary vascular resistance
* Right ventricular failure
* Potential for hemodynamic collapse

* Strategies for Performing RMs:

* Variations in:
* Duration: Length of the maneuver
* Pressure Target(s): Levels of pressure applied
* Frequency: How often RMs are performed
* Ventilator Maneuver: Specific techniques used

17
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| Cardiac output
| Da02

Alveolar Recruitment
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Response to RM = Balance

{

Impact on patient outcome

Figure 1 Balance between benefits (left tray) and risks (right
tray) of the recruitment maneuvers. VILI|, ventilator-induced lung
injury; RM, recruitment maneuver; Da02, oxygen transport.
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Guerin et al. Annals of Intensive Care 2011, 1:9
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Electrical Impedance tomography

extra-cellular

Fig. 6: Series of dynamic images showing air filling during
Fig. 3: Chest image reconstruction by EIT [21]. InSplratiOn by the PU|mOVISt8500 System [81].

Back

Mansouri et al.: Electrical impedance tomography. J Electr Bioimp, 12, 50-62, "



History of EIT - Applied potential tomography

Definition and Principle
*APT is a novel imaging technique designed to detect changes in the electrical resistivity

distribution within the human body.
*These changes reflect physiological activities such as respiration, cardiac cycles, or fluid

redistribution.

Physiological Applications

eRespiration: Variations in lung air volume cause measurable resistivity changes.
eCardiac Cycle: Blood flow within the thorax alters electrical conductivity during each

heartbeat.
*Fluid Redistribution: Under simulated weightlessness, body fluid shifts produce

observable impedance variations.

J Br Interplanet Soc. 1989 Aug;42(7):391-3.
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EIT system recording voltage in parallel

@ : clectrodes on the front
) : electrodes on the back

EIT system

Parallel voltage
recordings

Switching
system
Current
injection
Signal processing | Signal processing Signal processing
Voltage In Voltage 2n Voltage 3n Voltage mn
tasks : : : PRPAPN :
° . . .
Voltage 12 Voltage 22 Voltage 32 Voltage m2
Voltage 11 Voltage 21 Voltage 31 Voltage m1
Injection 1 Injection 2 Injection 3 Injection m | Image reconstruction R
Medical Engineering & Physics timeline

Volume 84, October 2020, Pages 36-50



Non-invasive real time lung monitoring—the
upcoming future?
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Non-invasive real time lung monitoring—the
upcoming future?

Basal EIT PEEP 5-10 PEEP 10

23
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Real-time effects of PEEP and tidal volume on regional
ventilation and perfusion in experimental lung injury

Electrical Impedance

Ventilation Settings .
Tomography (EIT) Monitoring

Experimental Subjects

* Atotal of 11 piglets * Mechanical ventilation

* Each pig had 32 electrodes evenly

were studied: 4 healthy
controls and 7 with
lung injury induced by
repeated saline lung
lavages.

Due to one
cardiovascular event,
10 animals completed
the experiment and
were included in the
final analysis.

was applied using
three tidal volumes
(VT) of 7,10, and 15
mL/kg,

and four levels of
positive end-
expiratory pressure
(PEEP): 5,8,10,and 12
cmH,0.

All 12 combinations of
VT and PEEP were
tested in randomized
order for each animal.

Borges et al. Intensive Care Medicine Experimental (2020) 8:10

placed around the thoracic
circumference to record

impedance changes within the lung.
The lungs were divided into three
gravity-dependent regions of
interest (ROIs):

nondependent, middle, and
dependent regions.

Ventilation maps were obtained
from changes in air content, while
perfusion maps were derived by
injecting 10 mL of 10% NaCl as a
conductive contrast agent during
an end-expiratory breath-hold.
The resulting impedance changes
were analyzed to estimate regional
pulmonary blood flow.

24
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Table 1 Cardiopulmonary parameters

Parameter Control Injured Control Injured

cr 2 @G ¢ n 12 13 14 15 16 Mean (SD)  Mean (SD)
Weight (kg) 30 33 30 33 30 28 29 33 3] 31 31 (2) 30 (2)
Lavage volume (L) O 0 0 0 4 5 2 4 9 2 0 (0) 4 (3)
P/F ratio (mmHg) 287 384 441 373 158 206 153 104 164 143 371 (64) 154 (33)*
ABP (mmHg) 65 /8 89 79 68 95 97 97 75 62 78 (10) 82 (16)
PAP (mmHg) 20 27 14 20 34 27 27 20 32 34 20 (5) 29 (6) #
CVP (mmHg) 6 11 11 6 13 8 11 6 8 12 9(3) 10 (3)
HR (bpm) 75 87 82 143 97 105 98 107 107 93 97 (31) 101 (6)
CO (L/min) 19 40 30 61 36 39 32 40 41 34 38(1.9 3.7 (04)

Borges et al. Intensive Care Medicine Experimental (2020) 8:10
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Distribution of ventilation depending
on prespecified ROI

\ Dynamic image: real
time distribution of

tidal volume over time

Tidal image: distribution of tidal
volume over the last breath, with
selected region of interest

29
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Table 1. Definition, Clinical Application, and Limitations of the Most Commonly Used EIT Indices in Patients with Hypoxemic

Respiratory Failure

EIT Indices Definition

TIV (tidalimpedance variation) Variation of impedance values

between end of inspiration
and end of expiration
(amplitude of plethysmogram
signal)

EELI (end-expiratory lungvolume) Regional lung impedance at

end of expiration

Sum of absolute differences
between median TIV and
each pixel TIV normalized to
sum of each pixel TIV

Global inhomogeneity index

Potential Applications

Reflects global and regional
relative distribution of V1 in
lungs during ventilation
Contributes to identification of
pleural effusion, pneumothorax,
endotracheal tube malposition,
pendelluft

EELI changes are correlated
with EELV variation

Reflects lung recruitment/
derecruitment

Contributes to identification of
pneumothorax

Reflects heterogeneity of
ventilation

Limits

Cannot be used for detailed
anatomic diagnosis
Only relative distribution of VT

Affected by factors other than
lung volume (inflatable
mattress, fluid infusion)

Does not reflect local
distribution of TIV

Does not take into account
overdistension, collapse, or
any other pathological
situation

30
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Table 1. Definition, Clinical Application, and Limitations of the Most Commonly Used EIT Indices in Patients with Hypoxemic

Respiratory Failure

EIT Indices

Overdistension and collapse
estimation

Regional ventilation delay

Center of ventilation

Dorsal fraction of ventilation

Definition

Estimation of relative local

compliance loss presented as

percentage of collapse and
overdistension during
decremental PEEP ftrial

Time between start of

inspiration and aeration of
lung regions

Describes geometrical center of
ventilation

Describes percentage of VT
distributed in dorsal region

Potential Applications

Selection of PEEP level that
jointly minimizes collapse and
overdistension

Applicable even on venovenous

ECMO when VT is very low

Identify recruitable lung regions
and cyclic opening/closing
phenomenon

Could be used to identify best
PEEP level with most
homogenized tidal inflation

Reflects global ventilation
homogeneity to guide and
monitor impact of mechanical
ventilation management or
adjunct therapies (i.e., prone
positioning)

Identification of adverse events
(e.g., malpositioning of
endotracheal tube or
development of pneumothorax)

Limits

Assumes that AP on ventilator
is reliable surrogate of
regional AP

Depends on highest and
lowest values of PEEP
applied during PEEP tnial

Requires a slow inflation
maneuver with constant flow
Depends on defined threshold
Does not detect not-
recruitable or overdistended
regions

Reflects ventilation shifts but
not their origin

Imprecise interpretation of
ventilation distribution
(ventilation on one side can
be compensated by other
side).

Setting PEEP aiming for
=50% dorsal distribution
could imply overdistension of
whole lung

31
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Table 2. Summary of Recent Clinical Trials Evaluating the Outcomes of an EIT-based PEEP in Patients with ARDS

Population

24 patients with ARDS
vs. 31 historical
patients (26)

117 patients with
ARDS (83)

87 patients with
ARDS (81)

12 patients with ARDS
with a cross-over
protocol (84)

Severity of the
Population

APACHE Il score 23.5

19.7% severe ARDS,
45.3% moderate
ARDS, APACHE Il
score 19

75.9% severe ARDS,
inclusion =24 h after
intubation

Paoszlog, 130; MV
duration at inclusion,
0.6 d; SAPS Il, 38

Mean PEEP in the EIT
group

Based on overdistension
and collapse: 18 cm
H.O

Based on overdistension
and collapse: 8 cm
H,O

Based on overdistension
and collapse: 16.2cm
H.O

Mean PEEP in the
control group

2cm H-0 above
inflection point of
pressure—volume
curve: 14cm H,0

Based on PEEP/Fig,
table: 8cm H,0

Based on
pressure—volume
curve: 17.4cm H.O

ElT-selected PEEP was lower: mean difference of

change, —2cm H20

Results

Higher compliance in
EIT-based PEEP
group: 26 vs.
20ml/cm Hs0

No difference in
clinical outcomes

Nonsignificant 28-d
mortality in EIT
group: 21% vs. 27%
ICU length of stay:
13 vs. 10 d
Ventilator-free days:
14vs 23 d

Lower hospital
mortality in EIT
group: 44.4% vs
69.0%

Lower AP in EIT
group: 10.9 vs.
12.4cm H.O

Lower mechanical
power in EIT group:
11.42J/min, with
lower AP and higher
static respiratory
system compliance

32
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Table 3. Main Advantages and Limitations of EIT and Future Improvements to Address Limitations

Main Advantages

e Real-time monitoring of lung
ventilation

e Evaluation of regional
compliance before and after
therapeutic procedures (e.qg.,
recruitment)

e Visualization and
quantification of
overdistension and collapse

¢ |dentification of pathological
situations (inhomogeneity,
Pendelluft effect)

Main Limitations

e Low spatial resolution

e Most sensitive to detect
electrical impedance
changes occurring in plane
of electrode belt

e Performance, relevance, and
reference values of EIT
indices still lacking

Direct Impact on Clinical
Practice

EIT cannot be used for
precise anatomic diagnosis

EIT analysis cannot be
extrapolated to lung part
outside visualized area
EELV cannot be precisely
inferred from EELI

Performance/relevance of
available EIT indices to
assess optimal PEEP have
not been compared

Normal ranges of EIT indices

unknown and may vary
between patients

Potential Future
Improvements

Technological improvement
and/or increase in number
of electrodes on belt

Further studies on potential
benefit of combining apical
EIT analysis with
conventional one

Best EIT indices for each
purpose need to be
identified in patients with
ARDS

“Normal ranges” should be
accurately evaluated

33
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Table 3. Main Advantages and Limitations of EIT and Future Improvements to Address Limitations

Main Advantages Main Limitations

e Lung perfusion assessment
insufficiently developed

e EIT can be coupled with
ventilator for further
physiological analysis

e Unknown clinical benefit of
daily EIT-guided mechanical
ventilation strategy

¢ Noninvasive continuous
bedside monitoring

Direct Impact on Clinical
Practice

e Most EIT devices still do not
perform lung perfusion
analysis

e Evaluation currently requires
apnea and hypertonic saline
bolus

e Clinical impacts of ventilation
strategy guided by EIT
remain unknown

Potential Future
Improvements

Integration of lung
perfusion module in all EIT
devices.

Promising method for lung
perfusion without saline
bolus should be further
investigated

Few clinical tnals are
ongoing (NCT04247477,
NCT03793842,
NCT03112512) to assess
potential benefit of EIT-
guided mechanical
ventilation on outcomes in
patients with ARDS

34
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Early management of ARDS Potential use of EIT

- To individualize ventilation settings

- To monitor prone positioning effects

- To monitor lung ultra-protective ventilation
on VV-ECMO

- To follow ventilation/perfusion ratio

- To identify patient-ventilator
dyssynchronies

Pa0,/FiO, < 80 Consider VV -ECMO

Neuromuscular blockade

Pa0,/Fl0, <150 Prone positioning

- To identify optimal PEEP

- To identify patient-ventilator
dyssynchronies (Pendelluft effect, Breath
stacking...)

- To detect airway opening pressure

High level of PEEP if improves oxygenation and/or

Pa0O,/FiO, < 200
%0;/Fi0; lung mechanics

Confirmed
ARDS

q | 4
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Step 1. Setup and Calibration

* Place 16-32 electrodes around the thorax (4th-5th intercostal
space).

* Ensure good skin contact; avoid bandages or subcutaneous
emphysema.

* Keep patient position stable to reduce motion artifacts.
* Calibrate baseline end-expiratory lung impedance (EELI).

38
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Step 2. Baseline Monitoring

* Observe tidal image (TIV) and end-expiratory impedance (EELI)
In real time.

* |dentify regions of:
* Hypoventilation or collapse.
* Overdistension or pneumothorax.
* Tube malposition or regional derecruitment after suctioning/BAL.

American Journal of Respiratory and Critical Care Medicine Volume 209 Number 6 | March 15 2024
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Step 3. PEEP Titration using EIT

* Goal: Find the compromise between alveolar recruitment and
overdistension.

1.Perform a decremental PEEP trial (keep other settings constant).

2.For each PEEP level, calculate:
1. Regional compliance changes.
2.Percentage of overdistension vs. collapse.

3.Plot both curves > Choose the intersection point as optimal
PEEP (= +2 cmH,0O transpulmonary pressure).

4.Confirm with improved dorsal ventilation and reduced
heterogeneity.

40
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Step 4. Adjust Tidal Volume (VT)

* Compare regional compliance before and after halving driving
pressure.
* » Compliance > Overdistension > Decrease VT.
« ¥ Compliance > Collapse > Consider higher PEEP.

* Target: Better oxygenation + lower regional ventilation delay.

American Journal of Respiratory and Critical Care Medicine Volume 209 Number 6 | March 15 2024
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Step 5. Positioning Strategies

* Prone position: Improves dorsal ventilation and compliance.

* Lateral position: May promote dorsal recruitment without high
pressure.

* Monitor EELI & TIV to detect derecruitment during repositioning.

42
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Step 6. Weaning & Spontaneous Breathing
Trial

* Use EIT to track changes in:
* Global Inhomogeneity Index (Gl) - rising Gl predicts SBT failure.
* EELI-drop indicates derecruitment.

* Early warning of regional instability and failed extubation risk.

Gl = ZFEETIVEZMPURTIVEBHERBN/ZPAEEE TIV RS -
R TER S MAVEAERE, -

43
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Day 1

)
_J

Minute image

Global

Tidal rate  /min

20

MTV global %

100

MTV ROI1 %

25

MTV ROI 2 %

56

MTV ROI 3 %

16

MTV ROl 4 %

Dorsal part atelectasis (+)
under PEEP 14.

RM was approached with 2
steps incremental PEEP until
PIP 40 cmH,0.

Decremental PEEP trial then

started with 2 cmH,0O
stepwise until PEEP 12.
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PEEP 26 PEEP 12

Day 1 — analysis result

Ventilation of ROl 4 (most dorsal part) remains low even at highest PEEP.

ROI 3 is recruitable (12 =2 26 %) but overdistension is noted over ROI 1 (by decreasing
ventilation from 35 to 14%),).

Optimal PEEP (balance overdistension & collapse) is closed to 18 but with ECMO in
place, PEEP was set at 14 based on minimal overdistension strategy.

Interestingly, shearing force could be seen over high PEEP indicates further
recruitment possibility by using higher PEEP.
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e Similarimage as compared to

yesterday under PEEP 14.

* RM was approached with 2

steps incremental PEEP until
PIP 40 cmH,0.

* Decremental PEEP trial then

started with 2 cmH,0
stepwise until PEEP 10.
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PEEP 24 PEEP 10

Day 2 — analysis result

Same as yesterday, ventilation of ROl 4 (most dorsal part) is not responsible to RM.

ROI 3 is recruitable (18 =2 11 %) but overdistension is noted over ROI 1 (by decreasing
ventilation from 28 to 21%). Both minor changes as compared to yesterday.

Optimal PEEP (balance overdistension & collapse) is reduced to 15 and both 14 or 12
are suitable for minimal overdistension strategy.

Still, shearing force could be seen over high PEEP same as yesterday.
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EIT-omics
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age (years)

gender (male / female)
BMI (kg/m~2)

P/F (mmHg)

PaCO2 (mmHg)

pH

Ventilatory Ratio
VE/PBW (mi/kg)
Pulmonary ARDS
Infectious ARDS

age (years)

gender (male / female)
BMI (kg/m~2)

P/F (mmHg)

PaCO2 (mmHg)

pH

Ventilatory Ratio
VE/PBW (mi/kg)
Pulmonary ARDS
Infectious ARDS

PEEPlow

ALL

(n=30)

64+ 14

2377 (77%/13%)
2845

205+55

4546

7444004
1.68+046
788+18

22 (73%)

22 (73%)
PEEPintermediate
ALL

(h=30)

64+ 14

23 /7 (77%/13%)
2664 (24.61-30.86)
205+55

45+6

744+0.04
1.61(1.38-1.87)
7.57 (6.66-8.54)
22 (73%)

22 (73%)
PEEPhigh

ALL

(h=28)

64+ 14

23/ 7 (77%/ 13%)
26.64 (25.04-30.86)
205+55

45+6

744+0.05
1.61(1.38-1.93)
7.57 (6.66-8.56)
21 (75%)

21 (75%)

UNMATCHED
(n=15)

59+15

12/3 (80% / 20%)
2846

198458

4745

7.43+004
1.70+049
7.75+146

12 (80%)
11(73.33%)

UNMATCHED
(n=7)

63418
5/2(71%/ 29%)
26 (25-29)
227450

4415
7.43+004

148 (1.32-1.65)
7.72 (6.8-8.07)

5 (71.43%)

5 (71.43%)

UNMATCHED
(n=6)

62419
5/1(83%/17%)
26 (25-27)
233451

4416
7.45+004

1.53 (1.40-1.69)
7.78 (7.32-8.19)
3 (50%)

5 (83.33%)

MISMATCHED
(n=9)

68+12

772 (78% / 22%)
27+3

202+43

43+7

744 +0.06
1.58+0.29
857+2.19

7 (77.78%)

8 (88.89%)

MISMATCHED
(n=11)

66+8
10/1(91% / 9%)
27 (26-31)
17847

46+8

746 +0.04
2.00(1.73-2.26)
7.23 (674-83)
10 (90.91%)

7 (63.64%)

MISMATCHED
(n=15)

64+14

13/2 (87%/ 13%)
26 (25-30)
199457

46+7

7.45+0.04

176 (147-2.17)
6.87 (6.55-8.3)

14 (93.33%)

11 (73.33%)

INHOMOG. VENTILATION
(n=6)

71412
4/2(67% /33%)
2745

228466

4346
7434003
1814062
7.10+1.04

3 (50%)

3 (50%)

INHOMOG. VENTILATION
(n=12)

63+17
8/4(67% / 33%)
27 (23-31)
217458

45+5
7.41+004

146 (1.27-1.65)
8.04 (6.52-9.9)

7 (58.33%)

10 (83.33%)

INHOMOG. VENTILATION
(n=7)

61+11
5/2(71% / 29%)
29 (27-33)

204 +58

4314
7394005

143 (1.30-1.65)
8.51(7.57-9.94)
4 (57.14%)

5 (71.43%)

p-value

0178
0.805
0.944
0515
0.239
0914
0.642
0333
0.350
0.249

p-value

0.887
0.363
0638
0.110
0.751
0.022
0.017
0.786
0.209
0.561

p-value

0510
0683
0411
0473
0534
0.015
0434
0.251
0.053
0.864
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a. Respiratory drive
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e. Clinical outcomes

p=0.019
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Each EIT variable was tested for differences between clusters by bonferroni-corrected
ANOVA/Kruskal-Wallis tests, significant features at PEEPlow are here represented
with their p-values and intra-class correlation coefficients (ICC)

f. Significant features

inhomogeneous Bonferroni-corrected
variable unmatched mismatched ventilation p-value ICC
Dead Space Fraction (%) 857 61+12 57 +8 <0.001 .80
High V'/Q [ventilation] (%) 72116 55 + 14 317 0.003 71
Normal V'/Q [perfusion] (%) 167 34 +7 317 0.001 79
Wasted Perfusion (%dorsal) 70 + 15 38 +£12 34 +19 0.005 70
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Take home message

* EIT is an emerging functional lung imaging tool with great
potential.

* EIT Provides noninvasive, continuous bedside monitoring of
lung ventilation and perfusion dynamics.

* The main challenges lie in perfusion measurement and clinical
validation.

* Future progress depends on integrating ventilation-perfusion
analysis, improving bedside usability, and generating solid
clinical evidence.

Thanks for your attention
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