

Assessment, Management trouble shooting of Patient-ventilator dyssynchrony

梁信杰 中國醫藥大學附設醫院 胸腔科

A daily scenario in ICU.....

Synchronous ventilator support match with patient demands

Asynchronies during mechanical ventilation are associated with mortality

- Intensive Care Med **41**, 633–641 (2015).

Ventilator Dyssynchrony

- Dyssynchrony = Asynchronies
 - Mismatch <u>between the inspiratory and expiratory</u> times of patient and ventilator
 - Failure to provide ventilated patients with optimal assistance.
- Result in
 - prolonged mechanical ventilation, difficult weaning, patient discomfort, increased diaphragmatic damage
 - Potential increase in morbidity and mortality

Incidence of patient–ventilator asynchrony in critically-ill patients

Cumulative incidence of asynchrony over the first 12 days of mechanical ventilation.

- PVA: ineffective triggering, double-triggering, short-cycle breaths, and long-cycle breaths
- Asynchrony index (AI)

 number of PVA events/total respiratory rate × 100)
 >10% was not associated with adverse clinical outcome !

-Respir. Care. 58(11), 1847–1855 (2013). *-* Zhou, Y. et al *Sci Rep* 11, 12390 (2021).

Achieve the right balance between patient-ventilator interaction

- David J Pierson Respir Care 2011;56:214-228

Ventilation regulation

Complex feedback-based respiratory neural controller in humans

Control of Breathing During Mechanical Ventilation: Who Is the Boss?

Synchrony between the two system !

- Respir Care. 2011 Feb; 56(2): 127-139

Patient–Ventilator Interactions

- From control to A/C mode.
- Three phases of breath delivery:
 - ^r trigger, target, and cycle. ₁

Mechanical Ventilation: Mode classification

A. Trigger mechanism

- What causes the breath to begin?
- B. Limit variable
- What regulates gas flow during the breath?
- C. Cycle mechanism
- What causes the breath to end?

Ventilatory phases

With problems in

- Timing of inspiration
- Adequate inspiratory flow
- Duration of inspiration
- Timing switch to expiration

Common ventilator modes and parameters

	Assist control ventilation		
	Volume control ventilation	Pressure control ventilation	Pressure support ventilation
Trigger	Time (vent-initiated breath) or Negative flow/pressure ^a (patient-initiated breath)	Time (vent-initiated breath) or Negative flow/pressure ^a (patient-initiated breath)	Negative flow/pressure ^a
Target/limit Cycle	Inspiratory volume Inspiratory time ^b	Inspiratory pressure Inspiratory time	Inspiratory pressure Inspiratory flow decay^c

^aDetermining flow versus pressure triggering is usually clinician-configurable.

^bVentilators in volume control ventilation (VCV) modes appear to cycle the breath after the inspiratory volume is reached, but in fact are usually cycling after the inspiratory time predicted for the set volume and flow. As flow in VCV is fixed, this has the same result.

^cPressure support ventilation cycling is most often defined by a fraction of the peak inspiratory flow; e.g. a breath ends when the flow decays to 25% (or some user-defined value) of the highest flow reached during the breath. On other ventilators, this cycling value may instead be set as a non-relative figure, such as 5 l/min.

Causes of Patient-Ventilator dyssynchronized

Patient factors

- Underlying disease
 - Acute processing distress
- Ventilatory drive
 - High or low
- Ventilatory requirements
 - flow and volume demand

Ventilator factors

- inspiratory trigger
 - flow, volume or pressure
- delivery mechanism
 - flow, volume or pressure
- cycling criteria
 - time to ventilator stops assisting inspiration
 - allows passive exhalation

Factors may cause asynchrony

Lucia Mirabella et al. Respir Care 2020;65:1751-1766

Factors that influence patient-ventilator interaction.

David J Pierson Respir Care 2011;56:214-228

Classifications of patient-ventilator asynchronies

Types of Asynchronies

- Major
 - ineffective triggering, auto-triggering, doubletriggering
- Minor
 - premature or short cycling, prolonged or delayed cycling, triggering delay

- ERJ Open Res 2017;3(4):00075-2017

Classification of PVA

- Phase classification
 - Inspiratory : delayed triggering, ineffective efforts, autotriggering
 - Expiratory : late and early cycling, double-triggering.
- Etiology classification
 - Low respiratory drive \pm too much ventilator assistance:
 - ineffective efforts, delayed cycling, auto-triggering, reverse triggering.
 - High respiratory drive and low ventilator support:
 - early cycling, double-triggering.

Underlying respiratory mechanics generate different types of asynchronies.

Lucia Mirabella et al. Respir Care 2020;65:1751-1766

How to improve patient-ventilator synchrony

How to improve patient-ventilator synchrony

- Ventilator factor
 - Waveform analysis
 - Optimization of ventilator settings

- Patient factor
 - Solve patient pathological condition
 - Treat underlying disease and best supportive care
 ex: sepsis control, organs support, PADIS problem etc.

ASSESSMENT

- Examination
 - work of breathing
 - respiratory pattern
 - audible sounds (e.g. cuff leak, stridor, wheeze)
 - chest findings (e.g. hyperexpansion, dullness, crackles)

- Monitor
 - vital signs
 - -ETCO2
 - -SpO2
- •Ventilator
 - -waveforms
 - -alarms
- •Chest x-ray

MANAGEMENT

- Resuscitation
 - address life threats
 - disconnect patient from ventilator and replace with BVM if required
- Address patient factors
 - treat patients respiratory pathology affecting resistance and/ or compliance (e.g. sputum, bronchospasm, chest wall eschar, pneumothorax)
 - treat other patient factors (e.g. hunger, pain, weakness, sleep ,sedation, nutrition, physiotherapy)

Management principles

- Correct problems associated with ventilator
 - choose appropriate ventilator
 - choose appropriate mode
 - ensure sensitivity is not too low or high
 - choose appropriate ventilator rate
 - set appropriate flow rate
 - check that patient isn't auto-triggering
 - cardiogenic oscillations, high sensitivity, circuit leaks, water condensation in the circuit
 - sedate patient to reduce agitation
 - taking over ventilation if fatigue is apparent

Respiratory cycle 4 phases approach

phase 1: 初始吸氣,要克服設定的壓力閾值才能驅動呼吸器打開吸氣瓣膜。
phase 2: 評估在吸氣週期間病人吸氣氣流是否足夠。
phase 3: 吸氣期結束時,取決於吐氣設定靈敏度。PSV決定吸氣的長短主要取
決於吐氣啟的設定;當吸氣氣流下降到設定值時,就會吸轉吐。
phase 4: 為吐氣週期部分,主要用來觀察有無存在auto-PEEP。

Asynchrony type: Trigger delay

Cause of Asynchrony	Solutions
 Low trigger sensitivity Low respiratory drive Presence of threshold load such as intrinsic PEEP Presence of partially obstructed ETT or HME Type of NIV interface eg, mask vs helmet 	 Adjust trigger sensitivity, Increase PEEP to counter intrinsic PEEP Replace HME or ETT Change NIV interface

- 1. the beginning of the patient's inspiratory effort
- 2. the delayed ventilator support (inspiratory delay)

Asynchrony type: Ineffective efforts/trigger

Cause of Asynchrony		Solutions	
1. 2.	Low trigger sensitivity Weak respiratory drive or weak effort - due to heavy sedation - excessive respiratory support - diaphragm dysfunction	 Adjust trigger sensitivity Reduce sedation or use drugs with no effect on the respiratory drive Reduce support Correct metabolic alkalosis 	
3. 4.	Presence high threshold load such as intrinsic PEEP Delayed cycling - especially in PSV mode or obstructive condition (Fig. 2), - during NIV in presence of intentional leak in a ventilator unable to compensate for them	 Increase PEEP to counter intrinsic PEEP Shorten inspiratory time Adjust EET criteria in an obstructive condition (eg, COPD), Use appropriate NIV software 	
5.		 consider a neural trigger if the problem persists 	

Patient neural inspiratory time and the ventilator cycling variable.

Patient inspiratory activity without ventilator assistance

- Ineffective triggering, result in flow starvation

delayed triggering

IE: ineffective effort

Asynchrony type: Auto-triggering

Cause of Asynchrony		Solutions	
1. 2. 3.	 High trigger sensitivity Leaks of circuit induced Random noise in the circuit cardiac oscillations condensed water in the circuit copious tracheobronchial secretions 	 Adjust trigger sensitivity Reduce noise Remove leak, Use appropriate NIV software 	

Cardiac oscillation

Asynchrony type: Double-triggering

Ē

Cause of Asynchrony		Solutions	
1. 2.	Short cycling due to insufficient assistance - fixed flow or lower tidal volumes in patient with high inspiratory flow demand in A/C mode Short cycling due to high expiratory trigger threshold - premature cycling, PSV mode in patients with low respiratory-system compliance and high respiratory drive (Fig. 2) Promote by reverse-triggering	 Increase inspiratory time in a time-cycled breath, increase inspiratory flow, adjust EET in PSV mode, optimize pressure rise time in PSV mode, remove the cause of reverse-triggering 	
5.			

- Insp. effort continued beyond ventilator Tinsp.

Asynchrony type: Reverse-triggering

Cause of Asynchrony	Solutions
1. Over assistance	Reduce assistanceReduce sedatives
2. Deep sedation	Muscle paralysis if necessary

Asynchrony type: Cycling asynchrony

Ca	use of Asynchrony	Solutions
1.	Neural time > ventilator inspiratory time - premature cycling	 Adjust inspiratory time and EET criteria in PSV mode, check for excessive assistance
2.	Neural time < ventilator inspiratory time - delayed cycling	 reduce leaks or use an appropriate NIV software use proportional modes

Reverse triggering: neuro-mechanical coupling

auto-triggering by air leak

Delay Cycling VS Premature cycling

Asynchrony type: Flow asynchrony

Са	use of Asynchrony	Solutions
1.	Low gas flow ring assisted volume control ventilation	 Increase gas flow or adjust inspiratory flow,
2.	Pressure rise time too low in pressure control	 decrease respiratory drive with an appropriate drug
	mode	 increase pressure rise in pressure control mode

Flow dyssynchrony (too fast or too slow)

Autotriggering (important to distinguish from ineffective triggering)

- hiccups
- coughing
- cardiac oscillations
- shivering
- seizures
- 'rain out' (condensation in ventilator circuit)
- trigger sensitivity set too low

Flow dyssynchrony (too fast or too slow)

- too slow: 'pull down' on pressure curve upstroke during inspiration
- too fast : e.g. discomfort from rise time too short

Strong inspiratory effort due to insufficient airflow in patient under Asisted VCV (concave in P tracing)

		waveronni example	common possible causes
hronies - during the beginning	of inspiration		
The time interval between the patient's inspiratory effort and the delivery of a mechanical breath is increased	Flow waveform: look for a longer- than-normal time interval between the positive deflection in flow 1 and the delivery of ventilatory support 2	Flow [//min] 25 - 0 - 25 - 25 -	 Trigger threshold set too high Ventilator pneumatics Presence of AutoPEEP Low respiratory drive Weak inspiratory effort
The patient's inspiratory effort fails to trigger the delivery of a mechanical breath	Flow waveform: look for an abrupt change in the steepness of the waveform 1 (decrease in expiratory flow or increase in inspiratory flow) that is not followed by ventilatory support 2	Flow [l/min] 25 0 -25 2	 Trigger threshold set too high Pressure support too high Set frequency and/or inspirate high (in controlled modes) Tidal volume set too high Presence of AutoPEEP Low respiratory drive Weak inspiratory effort Sedation
Two (or more) mechanical breaths are delivered during one single inspiratory effort	Flow waveform: look for two assisted breaths without expiration between them or with an expiration interval of less than half of the mean inspiratory time (often visually displayed as a waveform with two inspiratory peaks)	Flow [l/min] 25 - 0 - 25 -	 Cycling criteria (ETS) set too h Pressure support too high P-ramp too short Flow starvation High respiratory drive Time constant too short
	The time interval between the patient's inspiratory effort and the delivery of a mechanical breath is increased The patient's inspiratory effort fails to trigger the delivery of a mechanical breath Two (or more) mechanical breaths are delivered during one single inspiratory effort	The time interval between the patient's inspiratory effort and the delivery of a mechanical breath is increasedFlow waveform: look for a longer- than-normal time interval between the positive deflection in flow 1 and the delivery of ventilatory support 2The patient's inspiratory effort fails to trigger the delivery of a mechanical breathFlow waveform: look for an abrupt change in the steepness of the waveform 1 (decrease in expiratory flow or increase in inspiratory flow) that is not followed by ventilatory support 2Two (or more) mechanical breaths are delivered during one single inspiratory effortFlow waveform: look for two assisted breaths without expiration between them or with an expiration interval of less than half of the mean inspiratory time (often visually displayed as a waveform with two inspiratory peaks)	The time interval between the patient's inspiratory effort and the delivery of a mechanical breath is increasedFlow waveform: look for a longer- than-normal time interval between the positive deflection in flow ① and the delivery of ventilatory support ②Flow [Imin] 25The patient's inspiratory effort fails to trigger the delivery of amechanical breathFlow waveform: look for an abrupt change in the steepness of the waveform ① (decrease in expiratory flow or increase in inspiratory flow) that is not followed by ventilatory support ②Flow [Imin] 25Two (or more) mechanical breaths are delivered during one single inspiratory effortFlow waveform: look for two assisted them or with an expiration interval of less than half of the mean inspiratory time (often visually displayed as a waveform with two inspiratory peaks)Flow [Imin] 25

Avoid Patient – clinician Dyssynchrony !

Effects of prolonged passive mechanical ventilation

Controlled ventilation in a passive patient: often requires heavy sedation or even neuromuscular blockade to silence ventilatory muscle activity.

THANKS