

Clinical application of non-invasive positive pressure ventilation (NIPPV) in critical care

Trend of NIV and IMV during CAP hospitalization

誕史義大屬院 E-DA HOSPITAL

2021 Shah et al. Cureus 13(9): e17954. DOI 10.7759/cureus.17954

Trends in Ventilatory Support at the End of Life 2000-2017

JAMA Internal Medicine January 2021 Volume 181, Number 1

Trends in Ventilatory Support at the End of Life by Admitting Diagnosis, 2000-2017

Time frames for the application of NIV in acute respiratory failure

美大醫院

Eur Respir Rev 2018; 27: 180029

Evidence-based indications for NIV according to the severity and time of acute respiratory failure

			Stage of ARF	
		Not established	Mild-moderate (early)	Severe (late)
	High	 Extubation failure in high-risk hypercapnic patients (<i>i.e.</i> COPD) 	 COPD exacerbations Immunocompromised patients ACPE 	 Weaning from invasive ventilation (only COPD)
Likelihood of NPPV success	Moderate	 Post-abdominal surgery 	 Post-operative lung resection Fibre-optic bronchoscopy Do-not-intubatate order Chest trauma CAP 	 COPD exacerbations Pre-intubation oxygenation
	Low	 COPD exacerbations 	 Extubation failure Hypoxaemic (ARDS) Asthma exacerbations 	 Hypoxaemic (ARDS/CAP) Do-not-intubate order
		To prevent ARF	To prevent intubation	Alternative to invasive ventilation
			Goals of NPPV	

Eur Respir Rev 2018; 27: 180029

Official ERS/ATS clinical practice guidelines: recommendations for actionable PICO questions

Clinical indication#	Certainty of evidence [¶]	Recommendation	
Prevention of hypercapnia in COPD exacerbation	$\oplus \oplus$	Conditional recommendation against	
Hypercapnia with COPD exacerbation	$\oplus \oplus \oplus \oplus$	Strong recommendation for	
Cardiogenic pulmonary oedema	$\oplus \oplus \oplus$	Strong recommendation for	
Acute asthma exacerbation		No recommendation made	
Immunocompromised	⊕⊕⊕	Conditional recommendation for	
De novo respiratory failure (without prior chronic respiratory diseas	se)	No recommendation made	
Post-operative patients	$\oplus \oplus \oplus$	Conditional recommendation for	
Palliative care	$\oplus \oplus \oplus$	Conditional recommendation for	
Trauma	<u></u>	Conditional recommendation for	
Pandemic viral illness		No recommendation made	
Post-extubation in high-risk patients (prophylaxis)	$\oplus \oplus$	Conditional recommendation for	
Post-extubation respiratory failure	$\oplus \oplus$	Conditional recommendation against	
Weaning in hypercaphic patients	$\Theta \Theta \Theta$	Conditional recommendation for	

***: all in the setting of acute respiratory failure; *1*: certainty of effect estimates: **⊕⊕⊕**, high; **⊕⊕**, moderate; **⊕⊕**, low; **⊕**, very low.

The New England Journal of Medicine

©Copyright, 1995, by the Massachusetts Medical Society

(N Engl J Med 1995;333:817-22.)

ORIGINAL ARTICLE

N Engl J Med 2004;350:2452-60.

Noninvasive Positive-Pressure Ventilation for Respiratory Failure after Extubation

RESULTS

誕夕義大醫院 E-DA HOSPITAL

Noninvasive Ventilation in Acute Cardiogenic Pulmonary Edema

Variable	Standard Oxygen Treatment (N=367)	CPAP or NIPPV (N=702)	Odds Ratio (95% CI)	P Value
Death within 7 days (% of patients)	9.8	9.5	0.97 (0.63 to 1.48)	0.87
Death within 30 days (% of patients)	16.4	15.2	0.92 (0.64 to 1.31)	0.64
Intubation within 7 days (% of patients)	2.8	2.9	1.05 (0.49 to 2.27)	0.90
Admission to critical care unit (% of patients)	40.5	45.2	1.21 (0.93 to 1.57)	0.15
Myocardial infarction (% of patients)				
WHO criteria	24.9	27.0	1.12 (0.84 to 1.49)	0.46
Universal criteria	50.5	51.9	1.06 (0.82 to 1.36)	0.66
			Difference between Means (95% CI)†	
Mean length of hospital stay (days)	10.5	11.4	0.9 (-0.2 to 2.0)	0.10
Mean change at 1 hr after start of treatment‡				
Dyspnea score§	3.9	4.6	0.7 (0.2 to 1.3)	0.008
Pulse rate (beats/min)	13	16	4 (1 to 6)	0.004

N Engl J Med 2008;359:142-51.

Non-invasive positive pressure ventilation (CPAP or bilevel NPPV) for cardiogenic pulmonary oedema (Review)

Berbenetz N, Wang Y, Brown J, Godfrey C, Ahmad M, Vital FMR, Lambiase P, Banerjee A, Bakhai A, Chong M

		Relative effect (95% CI)	sof participants (studies)	Certainty of the evi- dence		
	Risk with SMC	Risk with SMC Risk with NPPV			(GRADE)	
HOSPITAL MORTALITY	Study population		RR 0.65	2484	⊕⊕ ⊖⊖	
follow-up: median 13 days; range 1 day - 41 176 per 1000 days		114 per 1000 (90 to 144)	(0.51 to 0.82)	(21 RCTs)	LOW ^{a,b}	
ETI RATE			RR 0.49	2449	@@@O	
follow-up: median 1 day; 154 per 1000 range 0.1 day - 30 days		75 per 1000 (58 to 95)	(0.38 to 0.62)	(20 RCTs)	MODERATE	
ACUTE MI INCIDENCE	Study population		RR 1.03	1313	@@@O	
follow-up: median 3 days; range 1 day - 41 days			(0.91 to 1.16)	(5 RCTs)	MODERATE ^d	
HOSPITAL LENGTH OF STAY	The mean HOSPITAL LENGTH OF STAY was 9.65 days	MD 0.31 days lower (1.23 lower to 0.61 higher)		1714 (11 RCTs)	⊕⊖⊖⊖ VERY LOW ^{e, f,g}	
heterogeneity. There w		t be pooled due to high s no evidence of a differ- d SMC in 4 BCTs, and 2		587 (6 RCTs)	⊕⊖⊖⊖ VERY LOW ^{h,i,j}	
	ence between NPPV and SMC in 4 RCTs, and 2 RCTs reported a shorter length of stay for NPPV (1 day shorter (95% Cl -1.79 to -0.21); n = 30; 4		Cochrane Database of Systematic Reviews 2019, Issue 4. Art. No.: CD00535			

Non-invasive positive pressure ventilation for treatment of <u>respiratory</u> failure due to severe acute exacerbations of asthma (Review)

Non-invasive positive pressure ventilation for treatment of respiratory failure due to severe acute exacerbations of asthma

Patient or population: patients with asthma

Settings:

Intervention: non-invasive positive pressure ventilation

Outcomes			Relative effect (95% Cl)	No of Participants (studies)	Quality of the evidence (GRADE)	Comments
	Assumed risk	Corresponding risk				
	Control	Non-invasive positive pressure ventilation				
Mortality Follow-up: 30 days	See comment	See comment	Not estimable	86 (2 studies)	⊕⊖⊖⊖ very low ^{1,2,3}	Not estimable
Endotracheal intuba- tion Follow-up: 30 days	See comment	See comment	RR 4.48 (0.23 to 89.13)	86 (2 studies)	⊕⊕⊖⊖ low ^{1,2}	No events in control group
Length of hospital stay Follow -up: 30 days	See comment	See comment	See comment	86 (2 studies)	⊕⊖⊖⊖ very low ^{1,2,3}	Unable to pool data
Number of hospital ad- missions Follow-up: 30 days	625 per 1000	175 per 1000 (56 to 525)	RR 0.28 (0.09 to 0.84)	33 (1 study)	⊕⊖⊖⊖ very low ^{2,3,4}	
FEV1 (% predicted) Percentage scale from: 1% to 150%. Follow-up: 1 to 30 days	dicted) ranged across control groups from	The mean FEV1 (% pre- dicted) in the interven- tion groups was 14.02 % higher		66 (2 studies)	⊕⊕⊖⊖ low ^{2,5}	
i chow up. i to oo uaya	00.07 210 40.0 70	(7.73 to 20.32 higher)	Cochrane	e Database of Sy	stematic Review	s 2012, Issue 12

藏美大醫院器

Non-invasive positive pressure ventilation for acute asthma in children (Review)

Non-invasive positive pressure ventilation for children with acute asthma

Patient or population: children with acute asthma	Korang SK, Feinberg J, Wetterslev J, Jakobsen JC.
Setting: hospital	Non-invasive positive pressure ventilation for acute asthma in children.
Intervention: non-invasive ventilation as add-on therapy to standard care Comparison: standard care	Cochrane Database of Systematic Reviews 2016, Issue 9. Art. No.: CD012067.

Outcomes			Relative effect (95% Cl)	No. of participants (studies)	Quality of the evidence (GRADE)	Comments	
	Risk with standard care	Risk with non-invasive ventilation as add-on therapy to standard care					
Mortality	Study population		not estimable	16	000	No deaths were seen.	
	0 per 1000	0 per 1000		(1 RCT)	very low ^a		
Serious adverse events	Study population		not estimable	35	000	No serious adverse	
	not pooled	not pooled		(2 RCTs)	very low ^a	events were reported	
Asthma symptom score at the acute phase	not estimable	not pooled	-	35 (2 RCTs)	⊕⊖⊖⊖ very low [∞]	Basnet 2012: Children in NPPV group had an improvement in their mean CAS from 7 (median, 7; in- terquartile range, 6 to 8) at baseline to 1.6 (median,2; interquartile range, 2 to 2.8) at 24 hours vs mean CAS from 6.9 (median, 7; interquartile	

Non-invasive positive pressure ventilation for prevention of complications after pulmonary resection in lung cancer patients (Review)

	Outcomes			Relative effect (95% Cl)	No of Participants (studies)	Quality of the evidence Comments (GRADE)	
		Assumed risk	Corresponding risk				
		Control	NIPPV versus no NIPPV				
	Pulmonary complica- tions	254 per 1000	277 per 1000 (183 to 421)	RR 1.03 (0.72 to 1.47)	238 (4 studies)	⊕⊕⊖⊖ low ^{1,2}	
	Rate of intubation	Study population		RR 0.55 (0.25 to 1.2)	69 (2 studies)		
		371 per 1000	71 per 1000 204 per 1000 (93 to 446)			moderate ²	
		Moderate					
		296 per 1000	163 per 1000 (74 to 355)				
	Mortality	115 per 1000	54 per 1000 (20 to 152)	RR 0.60 (0.24 to 1.53)	151 (4 studies)	⊕⊕⊕⊖ moderate ²	
	Length of intensive care unit stay		The mean length of in- tensive care unit stay in the intervention groups was		69 (2 studies)	⊕⊕⊖⊖ low ^{3,4}	
美大醫 院			0.75 lower (3.93 lower to 2.43	Cochrane Do	tabase of Systematic Re	vlews 2019, Issue 3. Art. No.: CD010355.	

Invasive versus non-invasive ventilation for acute respiratory failure in neuromuscular disease and chest wall disorders (Review)

Luo F, Annane D, Orlikowski D, He L, Yang M, Zhou M, Liu GJ

Cochrane Database of Systematic Reviews 2017, Issue 12.

Evidence-based Utilization of Noninvasive Ventilation and Patient Outcomes

Anuj B. Mehta^{1,2,3}, Ivor S. Douglas^{2,3}, and Allan J. Walkey^{4,5}

誕夏大醫院 E-DA HOSPITAL

 Table 1. Etiology of respiratory failure

 treated with noninvasive ventilation

Condition	Patients Receiving NIV (n = 22,706) %
Pneumonia COPD HF Nonpneumonia sepsis Asthma Other*	26.1 15.0 15.0 4.6 3.6 35.6

AnnalsATS Volume 14 Number 11 November 2017

ORIGINAL ARTICLE

High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure

N Engl J Med 2015; 372:2185-2196

Cumulation of intubation rates

誕夏大醫院 E-DA HOSPITAL

N Engl J Med 2015; 372:2185-2196

Cumulation of intubation rates

₩ 義大醫院

N Engl J Med 2015; 372:2185-2196

Cumulation of survival rates at day 90

義大

High-flow nasal cannula oxygen therapy is superior to conventional oxygen therapy but not to noninvasive mechanical ventilation on intubation rate: a systematic review and meta-analysis

Zhao et al. Critical Care (2017) 21:184

Comparison of intubation rates

HFNC versus COT

	HEN	С	CO	Г		Odds Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Rand	om, 95% Cl	
Bell, N.2015	0	48	1	52	1.7%	0.35 [0.01, 8.90]			20 192	
Corley, A.2015	0	81	2	74	1.9%	0.18 [0.01, 3.77]	+		10 53	
Frat, J. P.2015	40	106	44	96	38.4%	0.72 [0.41, 1.26]		-	+	
Hernandez, G.2016	13	264	32	263	29.8%	0.37 [0.19, 0.73]		-		
Jones, P. G.2015	1	172	3	150	3.3%	0.29 [0.03, 2.78]			12	
Lemiale, V.2015	5	53	4	49	8.6%	1.17 [0.30, 4.64]				
Maggiore, S. M.2014	6	53	16	52	14.5%	0.29 [0.10, 0.81]				
Parke, R.2013	2	170	0	171	1.9%	5.09 [0.24, 106.79]			80 - E	
Total (95% CI)		947		907	100.0%	0.52 [0.34, 0.79]		+		
Total events	67		102			15. SA 85.				
Heterogeneity: Tau ² :	= 0.04; Chi ^a	2= 7.73	df = 7 (F	9 = 0.38	5); I ² = 9%	2	-		1	4.04
Test for overall effect					(A14)		0.01	0.1 Favours [HFNC]	1 10	100
HFNC versus								ravours [HFNC]	Pavours [COT]	
	HENO	•	NIV			Odds Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI			om, 95% CI	
Frat, J. P.2015	40	106	55	111	26.7%	0.62 [0.36, 1.06]		-	-	
Hernandez, G.2016	66	290	60	314	36.7%	1.25 [0.84, 1.85]		-	-	
Stéphan, F.2015	58	414	57	416	36.6%	1.03 [0.69, 1.52]		-	-	
Total (95% CI)		810		841	100.0%	0.96 [0.66, 1.39]				
Total events	164		172			1993 A. St				
Heterogeneity: Tau ²	= 0.06; Chi	= 4.29	df = 2 (f	P = 0.13	2); I ² = 53	%	-	d d		4.04
Test for overall effect							0.01	0.1	1 10	100
			101					Favours [HFNC]	Favours [NIV]	

Zhao et al. Critical Care (2017) 21:184

Effect on the rate of escalation of respiratory support and Mortality

Effect on the rate of escalation of respiratory support

Effect on mortality

誕夕義大醫院 E-DA HOSPITAL

Zhao et al. Critical Care (2017) 21:184

HFNC versus NIV

Trusted evidence. Informed decisions. Better health.

Cochrane Database of Systematic Reviews

[Intervention Review]

High-flow nasal cannulae for respiratory support in adult intensive care patients

Sharon R Lewis¹, Philip E Baker², Roses Parker³, Andrew F Smith⁴

Conclusion

HFNC may lead to less treatment failure when compared to standard oxygen therapy, but probably makes little or no difference when compared to NIV or NIPPV. For most other review outcomes, we found no reliable evidence of a difference in effect. However, we identified another 51 ongoing trials and we plan to include these in future updates of the review. When these trials are incorporated, we may reach different conclusions about whether HFNC is helpful for breathing support in adult ICU patients.

Cochrane Database of Systematic Reviews 2021, Issue 3. Art. No.: CD010172.

HFNC compared to NIPPV or NIV for respiratory support in adult intensive care patients

Population: adults in the ICU, requiring respiratory support

誕史義大屬院 E-DA HOSPITAL

Setting: ICUs. In this review, these ICUs were in: Belgium, China, France, Saudi Arabia, and Spain

Intervention: oxygen delivered via HFNC, initiated after extubation from invasive mechanical ventilation or without prior use of invasive mechanical ventilation **Comparison:** oxygen delivered via NIV or NIPPV (using BiPAP)

Outcomes	Anticipated absolute effects [*] (95% CI)		Relative effect Number of p (95% CI) ticipants (studies)		Certainty of the evidence (GRADE)		
	Risk with NIP- PV or NIV	Risk with HFNC		()	(0.0.2.2)		
Treatment failure (esca- lation of respiratory thera-	Study population		RR 0.98 (0.78 to 1.22)	1758 (5 studies)	00 0	We conducted subgroup analysis and found no evidence of a difference in treat-	
py to NIV, NIPPV or invasive ventilation) Measured up to 28 days	202 per 1000	198 per 1000 (158 to 247)	(0.10 (0 1.22)	(5 studies)	Low ^a	ment failure when used post-extubation (RR 1.12, 95% CI 0.89 to 1.41; 3 studies, 1472 participants) and without prior use of mechanical ventilation (RR 0.77, 95% CI 0.58 to 1.03; 2 studies, 286 participants)	
In-hospital mortality	Study population		RR 0.92	1758 (Estudios)	000	-	
(up to 90 days; included studies reported in-hospital mortality, and mortality up to 28 days and up to ICU dis- charge)	136 per 1000	126 per 1000 (87 to 179)	- (0.64 to 1.31)	(5 studies)	Low ^a		

Cochrane Database of Systematic Reviews 2021, Issue 3. Art. No.: CD010172.

HFNC compared to NIPPV or NIV for respiratory support in adult intensive care patients

Adverse events	Study population	n for pneumonia	RR 0.51	1750 (2 studies)	0 000	-
Respiratory infection (pneu- monia)	159 per 1000	81 per 1000 (27 to 241)	- (0.17 to 1.52)	(3 studies)	Very low ^b	
Barotrauma (pneumotho- rax) Nasal mucosa or skin trau-		n for barotrauma 19 per 1000 (7 to 53) n for nasal mucosa	RR 1.15 (0.42 to 3.14)	830 (1 study)	⊕⊝⊝⊝ Low ^c	- No studies reported this outcome
ma	or skin trauma -	-				
Length of ICU stay	9.9 days	MD 0.72 days low- er (2.85 days lower to 1.42 days high- er)	-	246 (2 studies)	⊕⊕⊝⊝ Low ^d	In addition, 2 studies reported median lengths of ICU stay which we did not com- bine in analysis; these studies reported lit- tle or no difference in median lengths of ICU stay
Respiratory effects: PaO ₂ / FiO ₂ ratio up to 24 hours after initiation of therapy	228.9 mmHg	MD 58.1 mmHg lower (71.68 mmHg lower to 44.51 mmHg lower)	-	1086 (3 studies)	⊕⊕⊝⊝ Low ^e	-
Comfort (short-term ef- fect) Measured up to 24 hours, scales were standardized to allow comparison; high- er numbers indicate more comfort	6.06	MD 1.33 higher (0.74 higher to 1.92 higher)	-	258 (2 studies)	⊕⊝⊝⊝ Very low ^f	In addition, 1 study reported improved comfort with HFNC (RR 1.30, 95% CI 1.10 to 1.53; 1 study, 168 participants), and 1 study (830 participants) reported little or no difference between types of respirato- ry support, with comfort rated as 'poor', 'acceptable' or 'good'.
Comfort (long-term effect) Measured at more than 24 hours	-	-			⊕000 Very low g	1 study (304 participants) reported little or no difference between types of respira- tory support, with comfort rated as 'poor', 'acceptable' or 'good'.

誕日義大醫院 E-DA HOSPITAL

Cochrane Database of Systematic Reviews 2021, Issue 3. Art. No.: CD010172.

RESEARCH

Post-extubation oxygenation strategies in acute respiratory failure: a systematic review and network meta-analysis

Hideto Yasuda^{1,2*}, Hiromu Okano³, Takuya Mayumi⁴, Chihiro Narita⁵, Yu Onodera⁶, Masaki Nakane⁷ and Nobuaki Shime⁸

誕夏大醫院 E-DA HOSPITAL

(2021) 25:135

SYSTEMATIC REVIEW

Noninvasive respiratory support following extubation in critically ill adults: a systematic review and network meta-analysis

Shannon M. Fernando^{1,2*}, Alexandre Tran^{1,3,4}, Behnam Sadeghirad^{5,6}, Karen E. A. Burns^{6,7,8},

誕夏大醫院 E-DA HOSPITAL

Intensive Care Med (2022) 48:137-147

Table 2 Network and absolute estimates evaluating the efficacy of the interventions for prevention of reintubation in critically ill adults

Comparison	Network odds ratio (95% Cl)	Absolute risk difference (95% CI)	Number needed to treat	GRADE
NIPPV vs conventional oxygen	0.65 (0.52–0.82)	- 5.18 (- 8.09 to - 2.26)	20 (13 to 45)	Moderate ^a
HFNC vs conventional oxygen	0.63 (0.45–0.87)	- 3.84 (- 6.7 to - 0.98)	26 (15 to 102)	Moderate ^a
NIPPV vs HFNC	1.04 (0.78–1.38)	- 1.34 (- 4.4 to 1.72)	N/A	Low ^{a,b}
HFNC + NIPPV vs conventional oxygen	0.38 (0.19–0.74)	- 10.25 (- 18.49 to - 2.01)	10 (6 to 50)	Moderate ^a
HFNC + NIPPV vs NIPPV	0.58 (0.3–1.11)	— 5.07 (— 13.38 to 3.24)	N/A	Low ^{a,b}
HFNC + NIPPV vs HFNC	0.6 (0.33–1.08)	- 6.41 (- 14.13 to 1.31)	N/A	Low ^{a,b}

Table 3 Network estimates evaluating the efficacy of the interventions for prevention of short-term all-cause mortality in critically ill adults

Comparison	Network odds ratio (95% CI)	Absolute risk difference (95% CI)	GRADE
NIPPV vs conventional oxygen	0.8 (0.61–1.04)	- 1.65 (- 3.81 to 0.5)	Moderate ^b
HFNC vs conventional oxygen	0.9 (0.66–1.24)	- 0.29 (- 1.58 to 1.01)	Low ^a
NIPPV vs HFNC	0.89 (0.69–1.13)	- 1.37 (- 3.47 to 0.72)	Moderate ^b
HFNC + NIPPV vs conventional oxygen	0.95 (0.56–1.62)	0.41 (- 5.36 to 6.18)	Low ^a
HFNC + NIPPV vs NIPPV	1.19 (0.73–1.95)	2.07 (- 3.93 to 8.07)	Low ^a
HFNC + NIPPV vs HFNC	1.05 (0.69–1.62)	0.7 (- 4.93 to 6.33)	Low ^a

Intensive Care Med (2022) 48:137–147

Predictors of Intubation in Patients With Acute Hypoxemic Respiratory Failure Treated With a Noninvasive Oxygenation Strategy*

Multivariate Logistic Regression Analyses of Factors Associated With Intubation

Risk Factors	OR (95% CI)	Р
In patients treated with conventional O ₂ therapy by nonrebreathing mask ^a		
Respiratory rate ≥ 30 breaths/min at H1	2.76 (1.13–6.75)	0.03
In patients treated with high-flow nasal cannula oxygen therapy ^a		
Heart rate at H1 (per beat/min)	1.03 (1.01–1.06)	< 0.01
In patients treated with noninvasive ventilation ^{sb}		
Tidal volume > 9 mL/kg of predicted body weight at H1	3.14 (1.22–8.06)	0.02
Pao ₂ /Fio ₂ ≤ 200 mm Hg at H1	4.26 (1.62–11.16)	0.003

1 hour after non-invasive O2 therapy is important!

翻 義大醫院 E-DA HOSPITAL

Crit Care Med 2018; 46:208-215

An updated HACOR score for predicting the failure of noninvasive ventilation: a multicenter prospective observational study

Jun Duan^{1*†}, Lijuan Chen^{2†}, Xiaoyi Liu^{3†}, Suha Bozbay^{4†}, Yuliang Liu^{1†}, Ke Wang^{5†}, Antonio M. Esquinas⁶,

(2022) 26:196

Points for each variable in the original HACOR score 1-2 hours after NIV application

Variable	Category	Points
Heart rate, beats/min	<120	0
	≥121	1
pH (A cidosis)	≥7.35	0
	7.30–7.34	2
	7.25–7.29	3
	<7.25	4
GCS (C onsciousness)	15	0
	13–14	2
	11–12	5
	≤10	10
PaO ₂ /FiO ₂ (O xygenation), mmHg	≥201	0
	176–200	2
	151–175	3
	126–150	4
	101–125	5
	≤100	6
Respiratory rate, breaths/min	≤30	0
	31–35	1
	36–40	2
	41–45	3
	≥46	4

长臀院 E-DA HOSPITAL
 E-DA HOSPITAL
 I-SHOU UNIVERSITY

Duan et al. Critical Care

(2022) 26:196

Basic score for predicting NIV failure in the training cohort

Variable	Regression coefficient β per unit increase	Weight ($\beta/\beta_{reference}$) × 0.5	Assigned points
Pneumonia	0.90	0.90/0.19 × 0.5 = 2.37	2.5
CPE	-1.59	-1.59/0.19 × 0.5 = -4.18	-4
Presence of pulmonary ARDS	1.11	1.11/0.19 × 0.5 = 2.932	3
Presence of immunosuppression	0.54	0.54/0.19 × 0.5 = 1.42	1.5
Presence of septic shock	0.96	0.96/0.19 × 0.5 = 2.53	2.5
SOFA score	0.19	0.19/0.19 × 0.5 = 0.5	$0.5 \times SOFA$

Fig. 3 Cumulative incidence of NIV failure in patients at low, moderate, high, and very high risk for NIV failure when the updated HACOR score is assessed after 1–2 h of NIV. Patients with updated HACOR scores of \leq 7, 7.5–10.5, 11–14, and > 14, respectively, were classified as being at low, moderate, high, and very high risk for NIV failure. NIV = noninvasive ventilation, HACOR = heart rate, acidosis, consciousness, oxygenation, and respiratory rate

Duan et al. Critical Care (2022) 26:196

Predictive power for NIV failure of the updated HACOR score

Cutoff value	SE	SP	PPV	NPV	+ LR	-LR
	35	34	PPV	INFV	+ LK	-LR
Training cohort						
After 1–2 h of NIV, <i>I</i>	V=1451					
>7	84.9%	67.3%	59.8%	88.6%	2.59	0.22
> 10.5	59.9%	89.6%	76.8%	79.6%	5.76	0.45
>14	29.5%	97.9%	89.1%	70.8%	14.31	0.72
After 12 h of NIV, N	=1133					
>7	84.0%	71.2%	58.5%	90.2%	2.92	0.22
> 10.5	55.0%	91.8%	76.3%	80.9%	6.67	0.49
>14	20.9%	99.5%	95.1%	72.2%	39.86	0.80
After 24 h of NIV, N	=942					
>7	77.9%	73.5%	56.6%	88.2%	2.94	0.30
> 10.5	51.7%	93.4%	77.7%	81.3%	7.84	0.52
>14	21.0%	99.2%	92.4%	73.9%	27.4	0.80
Validation cohort						
After 1–2 h of NIV, I	N=728					
>7	89.9%	45.3%	57.4%	84.6%	1.64	0.22
>10.5	67.7%	76.5%	70.3%	74.3%	2.88	0.42
>14	29.0%	92.5%	76.0%	61.4%	3.86	0.77
After 12 h of NIV, N	=633					
>7	90.5%	51.2%	56.7%	88.4%	1.85	0.19
> 10.5	60.3%	79.0%	66.9%	73.8%	2.87	0.50
>14	27.5%	95.2%	80.0%	65.0%	5.66	0.76
After 24 h of NIV, N	=552					
>7	90.5%	53.2%	56.3%	89.3%	1.93	0.18
> 10.5	66.1%	78.3%	67.0%	77.5%	3.04	0.43
>14	23.5%	95.2%	76.5%	65.1%	4.87	0.80

长臀院 E-DA HOSPITAL
 E-DA HOSPITAL
 Inshou UNIVERSITY

Duan et al. Critical Care

(2022) 26:196

REVIEW

Noninvasive respiratory support for COVID-19 patients: when, for whom, and how?

Zachary P. Sullivan, Luca Zazzeron, Lorenzo Berra, Dean R. Hess, Edward A. Bittner and Marvin G. Chang^{*}

Table 1 Indications for NIV and HFNC in the setting of Acute Respiratory Failure

Indications for NIV in the Setting of Acute Respiratory Failure

1) Known patient history of OSA, COPD, congestive heart failure, or cardiogenic pulmonary edema [46, 47]

2) Hypercapnic respiratory failure

3) Dyspnea or staccato speech [48, 49]

Indications for HFNC in the Setting of Acute Respiratory Failure

1) PaO₂ < 65 or SpO₂ < 90% on supplemental oxygen [48]

2) RR > 25 [49]

3) Mild ARDS as defined by $PaO_2/FiO_2 < 300 \text{ but} > 200 [24, 49]$

 Table 2
 Contraindication
 to Non-invasive Ventilation (NIV)

Contraindications to NIV

Cardiac and respiratory arrest
 Encephalopathy or altered mentation [37]
 Severe hypoxaemia on admission defined as PaO₂/FiO₂ < 150 [50]
 Pneumothorax, pleural effusion, or pulmonary embolism [49]
 Active upper gastrointestinal bleed, emesis, or aspiration risk [37]
 Recent facial trauma or facial surgery [37]
 Hemodynamic instability as defined by vasopressor use [37, 51]
 Multiorgan dysfunction or failure [51]
 SOFA score > 5 is predictive of NIV failure [51, 52]
 Poorly controlled respiratory secretions [37, 39, 53]
 CXR/CT showing evidence of bilateral, multilobar involvement [39, 51–53]

Table 3Appropriate monitoringofNoninvasiveRespiratorySupport (NIRS)

Appropriate Monitoring of Noninvasive Respiratory Support

1) Hourly lab assessment (for 3 h)

a) ABG including PaO₂, PaCO₂, bicarbonate, lactate, and base excess

b) PaO_2/FiO_2 (target $PaO_2/FiO_2 > 300)$ [24, 50]

c) Subjective improvement or worsening of dyspnea [4]

2) Continuous monitoring (for 3 h):

a) Heart rate and respiratory rate trends [4, 24]

b) Pulse oximetry and FiO₂ requirement

c) Tidal volume measurement if utilizing CPAP or NIV [21, 43, 54]

Table 4 Primary and Secondary Indicators of Noninvasive Respiratory (NIRS) failure

Primary Indicators of Noninvasive Respiratory Support Failure 1) $PaO_2/FiO_2 < 150$ or inability to improve PaO_2/FiO_2 after 1 h of NIV [39, 50, 55] 2) Worsening/unimproved dyspnea or tachypnea > 25 after 1 h of NIV [24, 39, 53, 56] 3) Failure to maintain PaO_2 of 60 on FiO_2 of 0.6 [39, 53] 4) $SpO_2/FiO_2 < 196$ [35] 5) Tidal volume of > 9 ml/kg predicted body weight [21, 43, 54] 6) ROX value less than 2.85 at 2 h, less than 3.47 at 6 h, or less than 3.85 at 12 h predict HFNC failure [57] 7) pH < 7.25 or $PaCO_2 > 75$ after 2 h of NIV [42] Secondary Indicators of Noninvasive Respiratory Support Failure 1) SAPS II > 35, APACHE II > 17, or rising SOFA score [39, 51, 52, 55] 2) High peak pressure requirement [39, 53] 3) Worsening bronchorrhea [39, 53]

4) Intolerance of mask [39, 53]

Table 5 Safety considerations for Noninvasive Respiratory Support (NIRS) in COVID patients

Safety Considerations for Noninvasive Respiratory Support in COVID patients

1) Isolated negative pressure environment (room, hood, tent) [44]

a) Preferably with anteroom and private bathroom

2) Full contact, droplet, and airborne isolation precautions [44]

3) Full PPE that includes PAPR or N-95, gown, gloves, and face/eye shield [4]

4) Escalation of care to ICU for rapidly increasing O₂ requirement or patients on NIV

5) NIV with helmet and tight air cushion or unvented oronasal mask [9]

a) Dual limb circuit over single limb circuits when utilizing CPAP or NIV

6) For single limb circuit, filter over leak port

7) Viral-bacterial filter between mask and exhalation port [4]

8) Staffing that allows for close monitoring to assess for deterioration

9) Sterile equipment nearby in preparation for emergent intubation in the event of rapid deterioration

10) Daily monitoring of HCW for symptoms[1]

誕夏大醫院 E-DA HOSPITAL

Eur Respir Rev 2018; 27: 180029

discretion of clinical team

美大醫院

Casey JD, et al. BMJ Open 2019;9:e030476.

Proposal of management of oxygenation strategies to prevent or treat respiratory failure in patients extubated in ICUs

誕夕義大醫院 E-DA HOSPITAL

Journal of Intensive Medicine 1 (2021) 65-70

Summary

- NIPPV and HFNC are widely used in the critical care area and it is the first-line intervention for certain forms of ARF
- Explore the results of clinical studies on NIPPV and HFNC is very important to avoid drawbacks and to reduce the rate of failure during its application.
- Understanding principle of functioning of ventilator and modes will lead the operator to choose the best approach for patients.

謝謝聆聽!

