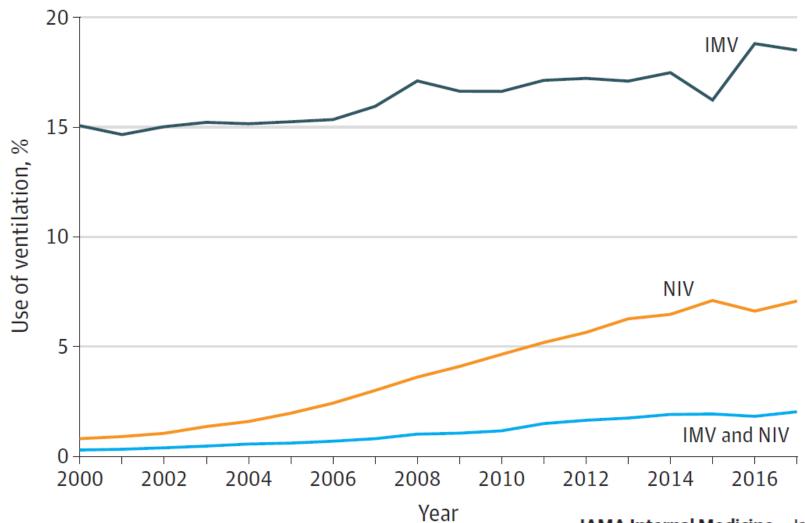
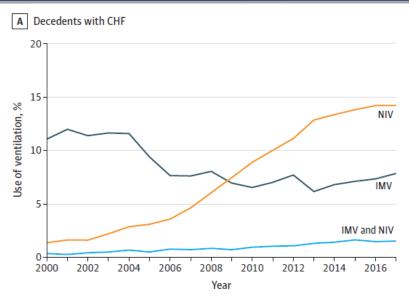
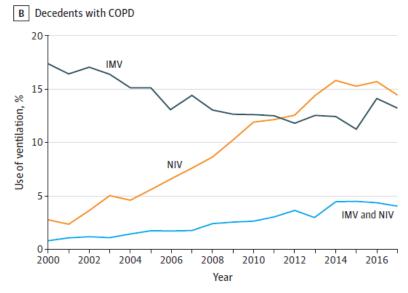


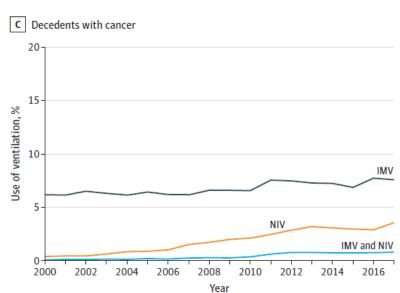
Clinical application of non-invasive positive pressure ventilation (NIPPV) in critical care

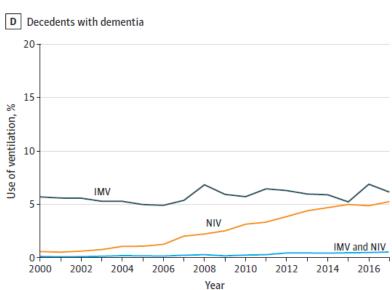

Trend of NIV and IMV during CAP hospitalization

Temporal Trends of Ventilation Utilization among hospitalizations due to CAP

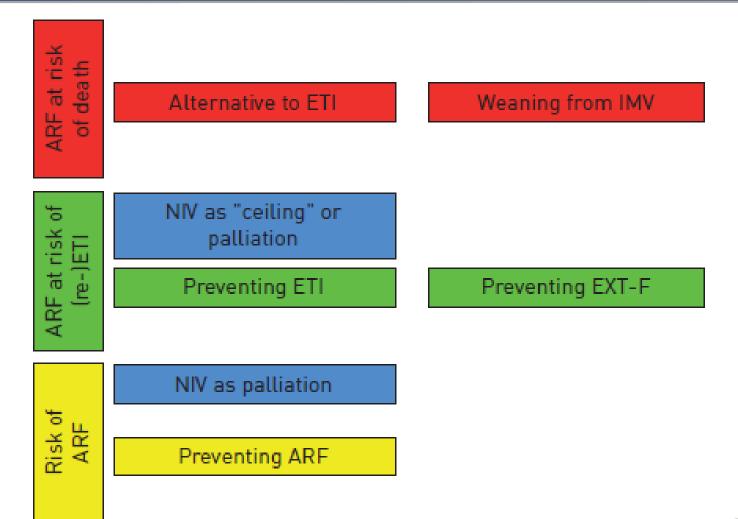



Trends in Ventilatory Support at the End of Life 2000-2017





Trends in Ventilatory Support at the End of Life by Admitting Diagnosis, 2000-2017



Time frames for the application of NIV in acute respiratory failure

Evidence-based indications for NIV according to the severity and time of acute respiratory failure

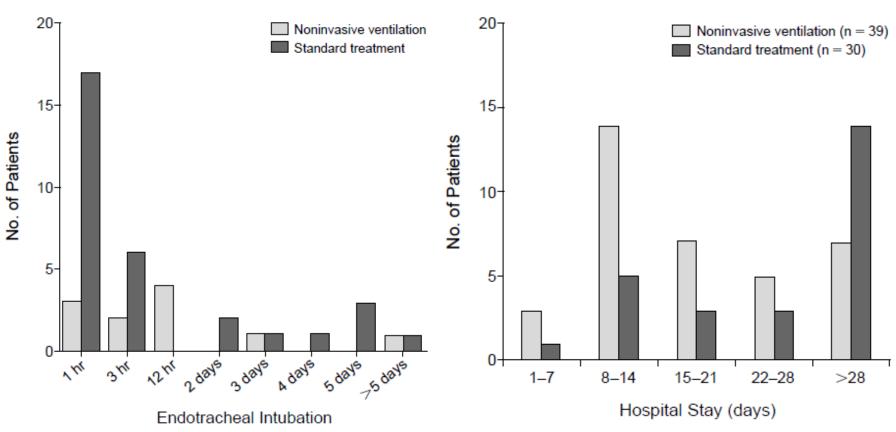
Stage of ARF

Mild-moderate Severe Not established (early) (late) Extubation failure in high-risk COPD exacerbations Weaning from invasive hypercapnic patients (i.e. COPD) Immunocompromised patients ventilation (only COPD) High ACPE · Post-operative lung resection Likelihood Fibre-optic bronchoscopy COPD exacerbations of Moderate Post-abdominal surgery Do-not-intubatate order Pre-intubation oxygenation NPPV success · Chest trauma CAP COPD exacerbations Hypoxaemic (ARDS/CAP) Extubation failure Low Do-not-intubate order Hypoxaemic (ARDS) Asthma exacerbations Alternative to To prevent To prevent ARF intubation invasive ventilation

Goals of NPPV

Official ERS/ATS clinical practice guidelines: recommendations for actionable PICO questions

Clinical indication#	Certainty of evidence ¶	Recommendation
Prevention of hypercapnia in COPD exacerbation	ФФ	Conditional recommendation agains
Hypercapnia with COPD exacerbation	$\oplus \oplus \oplus \oplus$	Strong recommendation for
Cardiogenic pulmonary oedema	$\oplus \oplus \oplus$	Strong recommendation for
Acute asthma exacerbation		No recommendation made
Immunocompromised	$\oplus \oplus \oplus$	Conditional recommendation for
De novo respiratory failure (without prior chronic respirator	ry disease)	No recommendation made
Post-operative patients	$\oplus \oplus \oplus$	Conditional recommendation for
Palliative care	$\oplus \oplus \oplus$	Conditional recommendation for
Trauma	ФФФ	Conditional recommendation for
Pandemic viral illness		No recommendation made
Post-extubation in high-risk patients (prophylaxis)	$\oplus \oplus$	Conditional recommendation for
Post-extubation respiratory failure	$\oplus \oplus$	Conditional recommendation agains
Weaning in hypercapnic patients	$\oplus \oplus \oplus$	Conditional recommendation for


The New England Journal of Medicine

©Copyright, 1995, by the Massachusetts Medical Society

(N Engl J Med 1995;333:817-22.)

Volume 333 SEPTEMBER 28, 1995 Number 13

NONINVASIVE VENTILATION FOR ACUTE EXACERBATIONS OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE

ORIGINAL ARTICLE

N Engl J Med 2004;350:2452-60.

Noninvasive Positive-Pressure Ventilation for Respiratory Failure after Extubation

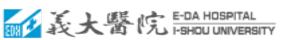
RESULTS

A total of 221 patie to either noninvas tients) when the tr ence between the r need for reintubat the noninvasive-ve. The rate of death i group than in the s 95 percent confide

In a post hoc analysis of the 23 patients with chronic obstructive pulmonary disease who were included in the study, we observed that the rate of reintubation was lower among those who had been assigned to noninvasive ventilation (7 of 14 [50 percent]) than among those who had been assigned to standard therapy (6 of 9 [67 percent], P=0.67), but the sample was too small to allow us to draw meaningful conclusions about this subgroup. Similarly,

omly assigned erapy (107 pawas no differy group in the relative risk in 0.76 to 1.30). eve-ventilation tive risk, 1.78; ime from res-

piratory failure to reintubation was longer in the noninvasive-ventilation group (12 hours vs. 2 hours 30 minutes, P=0.02).


Noninvasive ventilation
(N-114)

Standard medical therapy (N-107)

Crossover to noninvasive ventilation (N-28)

Noninvasive Ventilation in Acute Cardiogenic Pulmonary Edema

Variable	Standard Oxygen Treatment (N = 367)	CPAP or NIPPV (N=702)	Odds Ratio (95% CI)	P Value
Death within 7 days (% of patients)	9.8	9.5	0.97 (0.63 to 1.48)	0.87
Death within 30 days (% of patients)	16.4	15.2	0.92 (0.64 to 1.31)	0.64
Intubation within 7 days (% of patients)	2.8	2.9	1.05 (0.49 to 2.27)	0.90
Admission to critical care unit (% of patients)	40.5	45.2	1.21 (0.93 to 1.57)	0.15
Myocardial infarction (% of patients)				
WHO criteria	24.9	27.0	1.12 (0.84 to 1.49)	0.46
Universal criteria	50.5	51.9	1.06 (0.82 to 1.36)	0.66
			Difference between Means (95% CI)†	
Mean length of hospital stay (days)	10.5	11.4	0.9 (-0.2 to 2.0)	0.10
Mean change at 1 hr after start of treatment‡				
Dyspnea score∫	3.9	4.6	0.7 (0.2 to 1.3)	0.008
Pulse rate (beats/min)	13	16	4 (1 to 6)	0.004

Non-invasive positive pressure ventilation (CPAP or bilevel NPPV) for cardiogenic pulmonary oedema (Review)

Berbenetz N, Wang Y, Brown J, Godfrey C, Ahmad M, Vital FMR, Lambiase P, Banerjee A, Bakhai A, Chong M

Outcomes	Anticipated absolute ef	fects* (95% CI)	Relative effect (95% CI)	№ of participants (studies)	Certainty of the evidence	
	Risk with SMC	Risk with NPPV			(GRADE)	
HOSPITAL MORTALITY	, , ,		RR 0.65	2484	ФФОО	
follow-up: median 13 days; range 1 day - 41 days		114 per 1000 (90 to 144)	(0.51 to 0.82)	(21 RCTs)	LOW ^{a,b}	
ETI RATE	Study population		RR 0.49	2449	ΦΦΦO	
follow-up: median 1 day; range 0.1 day - 30 days	154 per 1000	75 per 1000 (58 to 95)	(0.38 to 0.62)	(20 RCTs)	MODERATE ^c	
ACUTE MI INCIDENCE	Study population		RR 1.03	1313	⊕⊕⊕⊝	
follow-up: median 3 days; range 1 day - 41 days	421 per 1000	433 per 1000 (383 to 488)	(0.91 to 1.16)	(5 RCTs)	MODERATE ^d	
HOSPITAL LENGTH OF STAY	The mean HOSPITAL LENGTH OF STAY was 9.65 days	MD 0.31 days lower (1.23 lower to 0.61 higher)		1714 (11 RCTs)	⊕○○○ VERY LOW ^{e, f, g}	
ICU LENGTH OF STAY	heterogeneity. There wa	t be pooled due to high s no evidence of a differ- d SMC in 4 RCTs, and 2		587 (6 RCTs)	⊕○○○ VERY LOW ^{h,i,j}	
	RCTs reported a shorter	length of stay for NPPV 1.79 to -0.21); n = 30; 4		Systematic Reviews 2019, I CD005351.pub4.	ssue 4. Art. No.: CD005351	

Non-invasive positive pressure ventilation for treatment of respiratory failure due to severe acute exacerbations of asthma (Review)

Non-invasive positive pressure ventilation for treatment of respiratory failure due to severe acute exacerbations of asthma

Patient or population: patients with asthma

Settings:

Intervention: non-invasive positive pressure ventilation

Outcomes	Illustrative comparative	risks* (95% CI)	Relative 6 (95% CI)	effect	No of Participants (studies)	Quality of the evidence (GRADE)	Comments
	Assumed risk	Corresponding risk					
	Control	Non-invasive positive pressure ventilation					
Mortality Follow-up: 30 days	See comment	See comment	Not estim	able	86 (2 studies)	⊕○○○ very low ^{1,2,3}	Not estimable
Endotracheal intuba- tion Follow-up: 30 days	See comment	See comment	RR 4.48 (0.23 to 8	39.13)	86 (2 studies)	⊕⊕⊜⊝ low ^{1,2}	No events in contro group
Length of hospital stay Follow-up: 30 days	See comment	See comment	See comr	ment	86 (2 studies)	⊕○○○ very low ^{1,2,3}	Unable to pool data
Number of hospital ad- missions Follow-up: 30 days	625 per 1000	175 per 1000 (56 to 525)	RR 0.28 (0.09 to 0).84)	33 (1 study)	⊕○○○ very low ^{2,3,4}	
FEV1 (% predicted) Percentage scale from: 1% to 150%.	dicted) ranged across control groups from	The mean FEV1 (% pre- dicted) in the interven- tion groups was		2 (7.73 to 20.	66 (2 studies)	⊕⊕⊜⊝ low ^{2,5}	
Follow-up: 1 to 30 days	35.51 L to 43.9 %	14.02 % higher (7.73 to 20.32 higher)		Cochrane	Database of Sv	stematic Review	s 2012, Issue 1

Non-invasive positive pressure ventilation for acute asthma in children (Review)

Man invacive positive proceure ventilation for children w	th acute actions
Non-invasive positive pressure ventilation for children w	n acuie asimma

Patient or population: children with acute asthma

Setting: hospital

Intervention: non-invasive ventilation as add-on therapy to standard care

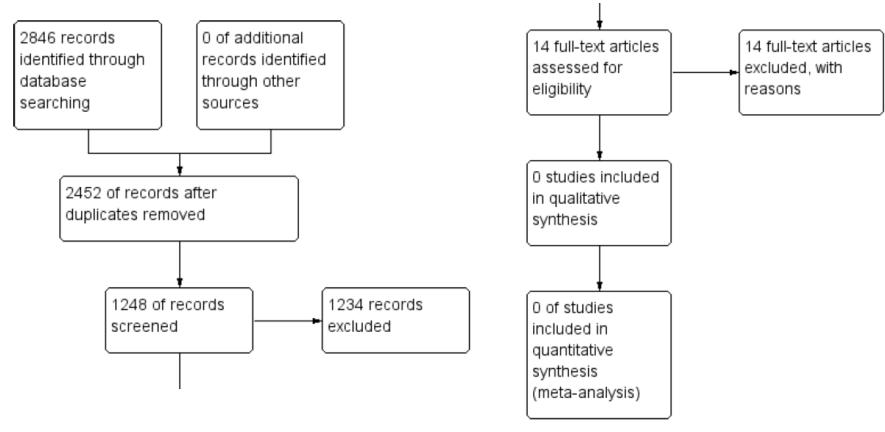
Comparison: standard care

Korang SK, Feinberg J, Wetterslev J, Jakobsen JC.

Non-invasive positive pressure ventilation for acute asthma in children.

Cochrane Database of Systematic Reviews 2016, Issue 9. Art. No.: CD012067.

vale		2001			
Anticipated absolute ef	fects* (95% CI)	Relative effect (95% CI)	No. of participants (studies)	Quality of the evidence (GRADE)	Comments
Risk with standard care	Risk with non-invasive ventilation as add-on therapy to standard care				
Study population		not estimable	16 (1 PCT)	Ф000	No deaths were seen.
0 per 1000	0 per 1000		(I HOI)	very low-	
Study population		not estimable	35 (2 PCTs)	ФООО	No serious adverse
not pooled	not pooled		(2 no15)	very low-	events were reported
not estimable	not pooled	-	35 (2 RCTs)	⊕⊖⊖ very low ^a	Basnet 2012: Children in NPPV group had an improvement in their mean CAS from 7 (median, 7; interquartile range, 6 to 8) at baseline to 1.6 (median, 2; interquartile range, 2 to 2.8) at 24 hours vs mean
	Study population O per 1000 Study population not pooled	Anticipated absolute effects* (95% CI) Risk with standard care Risk with non-invasive ventilation as add-on therapy to standard care Study population 0 per 1000 0 per 1000 Study population not pooled not pooled	Anticipated absolute effects* (95% CI) Risk with standard care Risk with non-invasive ventilation as add-on therapy to standard care Study population O per 1000 Study population not estimable not pooled not pooled	Anticipated absolute effects* (95% CI) Relative effect (95% CI) Risk with standard care Risk with non-invasive ventilation as add-on therapy to standard care Study population O per 1000 O per 1000 Study population not estimable not estimable not pooled not pooled not pooled - 35	Anticipated absolute effects* (95% CI) Risk with standard care Risk with non-invasive ventilation as add-on therapy to standard care Study population 0 per 1000 0 per 1000 Study population not estimable not estimable not pooled not pooled


Non-invasive positive pressure ventilation for prevention of complications after pulmonary resection in lung cancer patients (Review)

Outcomes	Illustrative comparative	e risks* (95% CI)	Relative effect (95% CI)	No of Participants (studies)	Quality of the evidence Comments (GRADE)
	Assumed risk	Corresponding risk			
	Control	NIPPV versus no NIPPV			
Pulmonary complica- tions	254 per 1000	277 per 1000 (183 to 421)	RR 1.03 (0.72 to 1.47)	238 (4 studies)	⊕⊕⊜⊝ low ^{1,2}
Rate of intubation	Study population		RR 0.55	69	⊕⊕⊕⊝ moderate ²
	371 per 1000	204 per 1000 (93 to 446)	(0.25 to 1.2)	(2 studies)	moderate-
	Moderate				
	296 per 1000	163 per 1000 (74 to 355)			
Mortality	115 per 1000	54 per 1000 (20 to 152)	RR 0.60 (0.24 to 1.53)	151 (4 studies)	⊕⊕⊕⊜ moderate ²
Length of intensive care unit stay		The mean length of in- tensive care unit stay in the intervention groups was 0.75 lower		69 (2 studies)	⊕⊕⊜⊝ low ^{3,4}
		(3.93 lower to 2.43	Cochrane Da	tabase of Systematic Re	views 2019, Issue 3. Art. No.: CD010355.

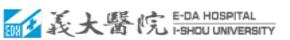
Invasive versus non-invasive ventilation for acute respiratory failure in neuromuscular disease and chest wall disorders (Review)

Luo F, Annane D, Orlikowski D, He L, Yang M, Zhou M, Liu GJ

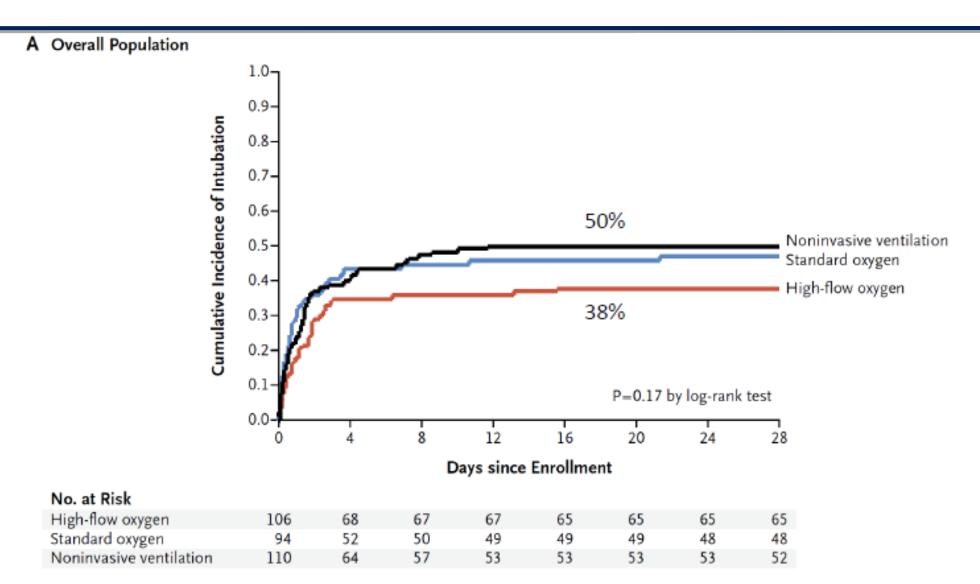
Evidence-based Utilization of Noninvasive Ventilation and Patient Outcomes

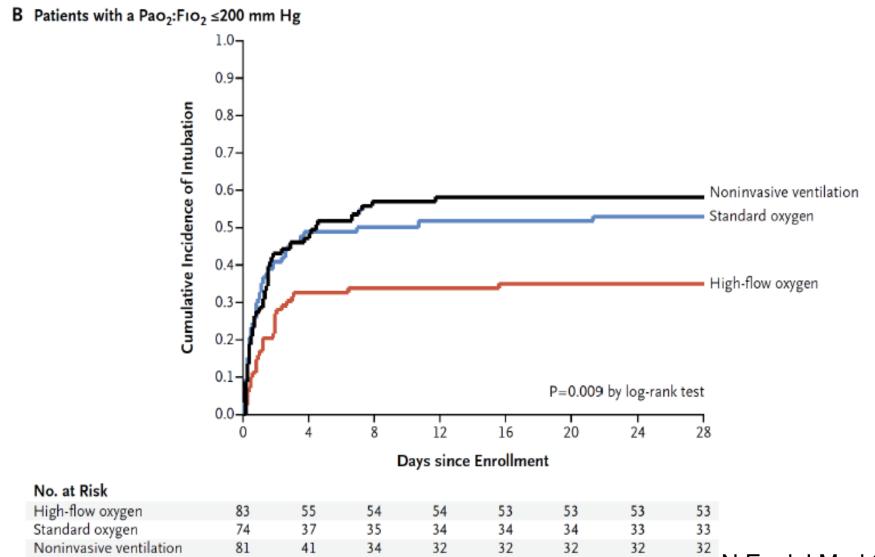
Anuj B. Mehta^{1,2,3}, Ivor S. Douglas^{2,3}, and Allan J. Walkey^{4,5}


Table 1. Etiology of respiratory failure treated with noninvasive ventilation

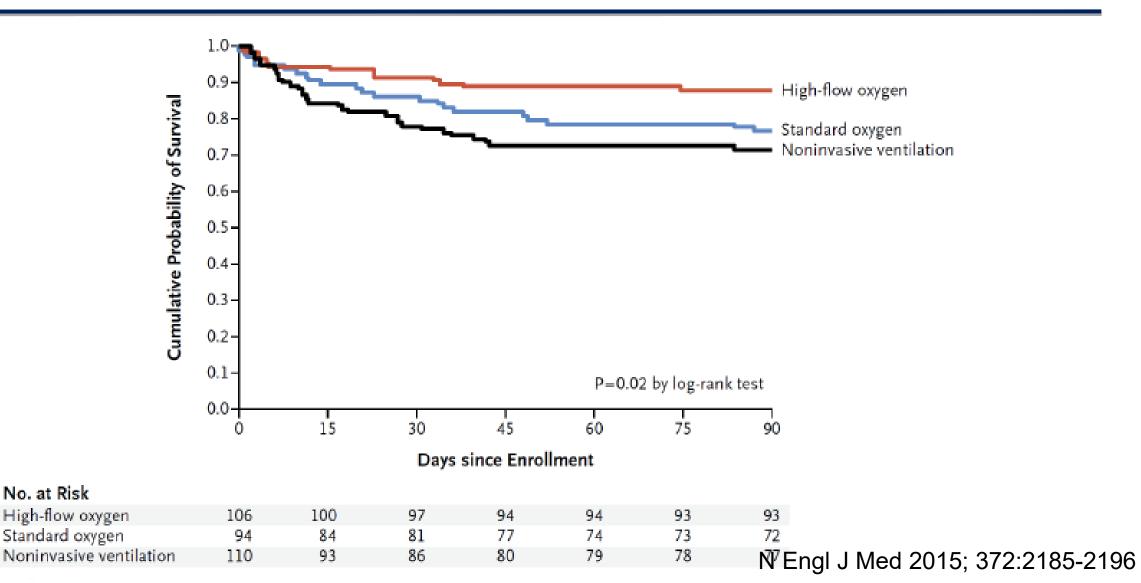

•	Condition	Patients Receiving NIV (n = 22,706) %
ı	Pneumonia COPD HF Nonpneumonia sepsis Asthma	26.1 15.0 15.0 4.6
	Other*	35.6

ORIGINAL ARTICLE


High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure

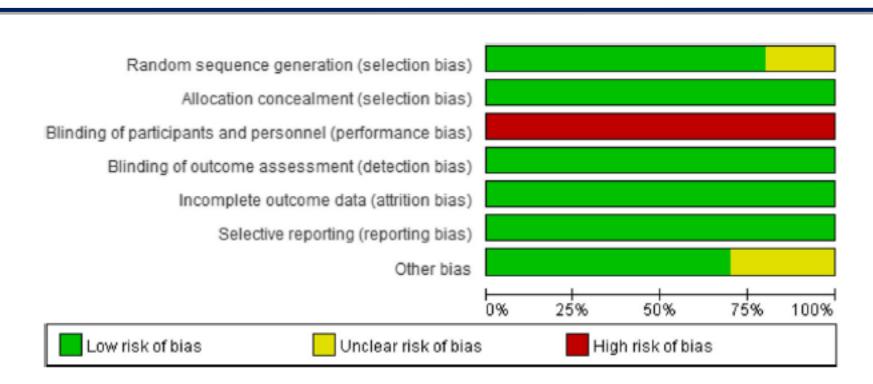


Cumulation of intubation rates

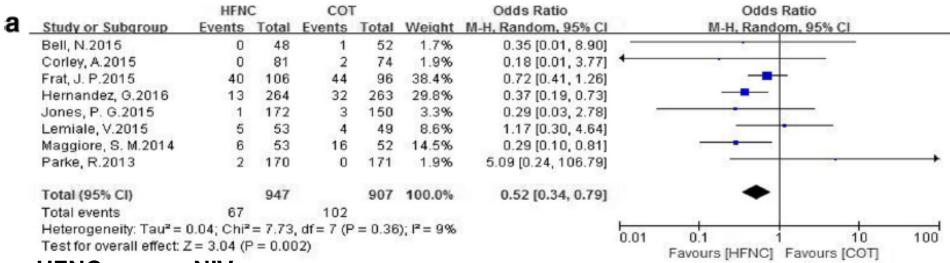

Cumulation of intubation rates

N Engl J Med 2015; 372:2185-2196

Cumulation of survival rates at day 90

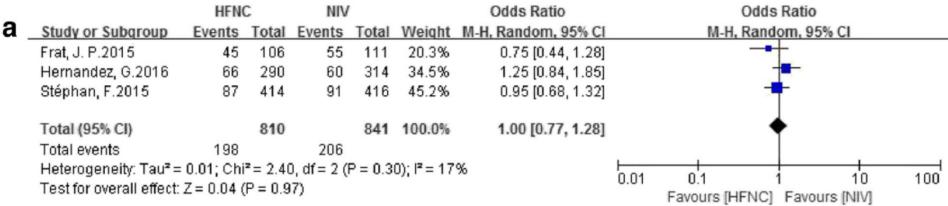


No. at Risk


High-flow nasal cannula oxygen therapy is superior to conventional oxygen therapy but not to noninvasive mechanical ventilation on intubation rate: a systematic review and meta-analysis

Comparison of intubation rates

HFNC versus COT


HFNC versus NIV

L	III INO VEISUS	HEN	С	NIV			Odds Ratio	Odds Ratio	
b,	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
	Frat, J. P.2015	40	106	55	111	26.7%	0.62 [0.36, 1.06]	-	
	Hernandez, G.2016	66	290	60	314	36.7%	1.25 [0.84, 1.85]	-	
	Stéphan, F.2015	58	414	57	416	36.6%	1.03 [0.69, 1.52]	*	
	Total (95% CI)		810		841	100.0%	0.96 [0.66, 1.39]	•	
	Total events	164		172					
	Heterogeneity: Tau2=	0.06; Ch	$i^2 = 4.29$	9, df = 2 (P = 0.1	2); $I^2 = 53$	% F	01 01 10 10	00
	Test for overall effect:	Z = 0.20	(P = 0.8)	34)				0.01 0.1 1 10 10 Favours [HFNC] Favours [NIV]	JU

Effect on the rate of escalation of respiratory support and Mortality

Effect on the rate of escalation of respiratory support

HFNC versus NIV

Effect on mortality

	•	HFN	С	NIV	,		Odds Ratio		Odds Ra	tio	
b.	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Random,	95% CI	
	Frat, J. P.2015	12	106	27	111	30.7%	0.40 [0.19, 0.83]				
	Hernandez, G.2016	19	290	18	314	33.1%	1.15 [0.59, 2.24]		-	-	
	Stéphan, F.2015	28	414	23	416	36.2%	1.24 [0.70, 2.19]		-	-	
	Total (95% CI)		810		841	100.0%	0.85 [0.43, 1.68]		-		
	Total events	59		68							
	Heterogeneity: Tau ² =	0.25; Chi	$^{2} = 6.43$	3, df = 2 (1)	P = 0.0	4); I² = 69	%	0.01	0.1 1	10	100
	Test for overall effect: 2	Z = 0.46 (P = 0.6	5)				0.01	Favours [HFNC] Fa		100

[Intervention Review]

High-flow nasal cannulae for respiratory support in adult intensive care patients

Sharon R Lewis¹, Philip E Baker², Roses Parker³, Andrew F Smith⁴

Conclusion

HFNC may lead to less treatment failure when compared to standard oxygen therapy, but probably makes little or no difference when compared to NIV or NIPPV. For most other review outcomes, we found no reliable evidence of a difference in effect. However, we identified another 51 ongoing trials and we plan to include these in future updates of the review. When these trials are incorporated, we may reach different conclusions about whether HFNC is helpful for breathing support in adult ICU patients.

HFNC compared to NIPPV or NIV for respiratory support in adult intensive care patients

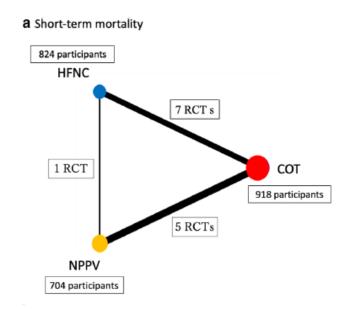
Population: adults in the ICU, requiring respiratory support

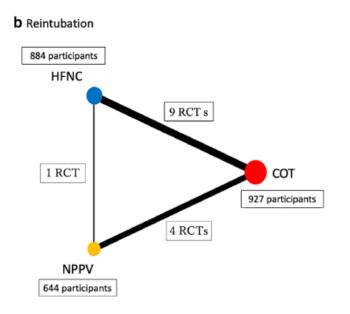
Setting: ICUs. In this review, these ICUs were in: Belgium, China, France, Saudi Arabia, and Spain

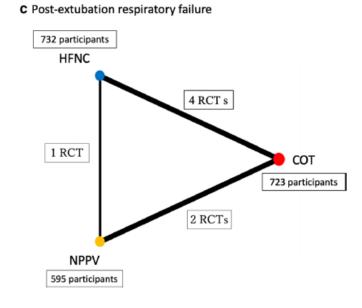
Intervention: oxygen delivered via HFNC, initiated after extubation from invasive mechanical ventilation or without prior use of invasive mechanical ventilation

Comparison: oxygen delivered via NIV or NIPPV (using BiPAP)

Outcomes	Anticipated abso	olute effects* (95%	Relative effect (95% CI)	Number of par- ticipants (studies)	Certainty of the evidence (GRADE)	
	Risk with NIP- PV or NIV	Risk with HFNC		, ,	` '	
Treatment failure (esca- lation of respiratory thera-	Study population		RR 0.98 - (0.78 to 1.22)	1758 (5 studies)	⊕⊕⊝⊝	We conducted subgroup analysis and found no evidence of a difference in treat-
py to NIV, NIPPV or invasive ventilation) Measured up to 28 days	202 per 1000	198 per 1000 (158 to 247)	(6.76 to 1.22)	(5 studies)	Low ^a	ment failure when used post-extubation (RR 1.12, 95% CI 0.89 to 1.41; 3 studies, 1472 participants) and without prior use of mechanical ventilation (RR 0.77, 95% CI 0.58 to 1.03; 2 studies, 286 participants)
In-hospital mortality	Study population		RR 0.92 - (0.64 to 1.31)	1758 (5 studies)	⊕⊕⊝⊝	-
(up to 90 days; included studies reported in-hospital mortality, and mortality up to 28 days and up to ICU dis- charge)	136 per 1000	126 per 1000 (87 to 179)	(5.5 : 15 1.51)	(5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Low ^a	


HFNC compared to NIPPV or NIV for respiratory support in adult intensive care patients


Adverse events	Study population	n for pneumonia	RR 0.51	1750	⊕⊝⊝⊝	-		
Respiratory infection (pneumonia)	159 per 1000	81 per 1000 (27 to 241)	(0.17 to 1.52)	(3 studies)	Very low ^b	Very low ^b		
Barotrauma (pneumotho- rax)	Study population	n for barotrauma	RR 1.15 (0.42 to 3.14)	830 (1 study)	⊕⊝⊝⊝	-		
Taxj	17 per 1000	19 per 1000 (7 to 53)	(0.42 to 3.14)	(1 study)	Low ^c			
Nasal mucosa or skin trau- ma	Study population or skin trauma	n for nasal mucosa	-	-	-	No studies reported this outcome		
	-	-						
Length of ICU stay	9.9 days	MD 0.72 days low- er	-	246 (2 studies)	⊕⊕⊝⊝	In addition, 2 studies reported median lengths of ICU stay which we did not com-		
		(2.85 days lower to 1.42 days high- er)		(2 studies)	Low ^d	bine in analysis; these studies reported lit- tle or no difference in median lengths of ICU stay		
Respiratory effects: PaO ₂ /	228.9 mmHg	MD 58.1 mmHg lower	-	1086 (3 studies)	⊕⊕⊝⊝	-		
FiO ₂ ratio up to 24 hours after initiation of therapy		(71.68 mmHg lower to 44.51 mmHg lower)		(3 studies)	Lowe			
Comfort (short-term effect)	6.06	MD 1.33 higher (0.74 higher to	-	258 (2 studies)	⊕⊝⊝⊝	In addition, 1 study reported improved comfort with HFNC (RR 1.30, 95% CI 1.10		
Measured up to 24 hours, scales were standardized to allow comparison; high- er numbers indicate more comfort		1.92 higher)		(2 studies)	Very low ^f	to 1.53; 1 study, 168 participants), and 1 study (830 participants) reported little or no difference between types of respiratory support, with comfort rated as 'poor', 'acceptable' or 'good'.		
Comfort (long-term effect)	-	-	-	-	⊕⊝⊝⊝	1 study (304 participants) reported little		
Measured at more than 24 hours					Very low g	or no difference between types of respira- tory support, with comfort rated as 'poor', 'acceptable' or 'good'.		



Post-extubation oxygenation strategies in acute respiratory failure: a systematic review and network meta-analysis

Hideto Yasuda^{1,2*}, Hiromu Okano³, Takuya Mayumi⁴, Chihiro Narita⁵, Yu Onodera⁶, Masaki Nakane⁷ and Nobuaki Shime⁸

a Short-term mortality

Treatment	Comparator	RR (95% CrI)	Favor: Treatme	-	Favors Compara	
NPPV	СОТ	0.75 (0.53-1.06)		-		
HFNC	сот	0.92 (0.67-1.27)		-	-	
NPPV	HFNC	0.81 (0.61-1.08)		-		
			0.2	1	2	 5
				RR (95%	CrI)	

b Reintubation

Treatment	Comparator	RR (95% CrI)	_	Favors Treatment		Favors Comparator	r
NPPV	сот	0.55 (0.30-1.00)		-	_		
HFNC	сот	0.54 (0.32-0.89)	-	-	_		
NPPV	HFNC	1.02 (0.53-1.97)	-	_	—	_	
			0.2		1	2	 5
				RI	R (95% Crl)	

C Post-extubation respiratory failure

Treatment	Comparator	RR (95% CrI)	Favors Treatment			Favors mparator	
NPPV	СОТ	0.86 (0.54-1.38)	_	•	_		
HFNC	сот	0.66 (0.43-1.02)	—•	\dashv			
NPPV	HFNC	1.30 (0.79-2.14)		-	•	_	
			0.2	1		2	5

RR (95% Crl)

SYSTEMATIC REVIEW

Noninvasive respiratory support following extubation in critically ill adults: a systematic review and network meta-analysis

Shannon M. Fernando^{1,2*}, Alexandre Tran^{1,3,4}, Behnam Sadeghirad^{5,6}, Karen E. A. Burns^{6,7,8},

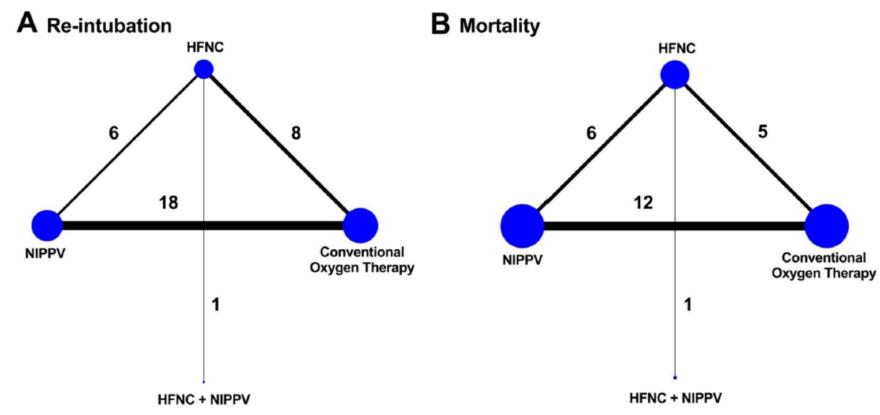


Table 2 Network and absolute estimates evaluating the efficacy of the interventions for prevention of reintubation in critically ill adults

Comparison	Network odds ratio (95% CI)	Absolute risk difference (95% CI)	Number needed to treat	GRADE
NIPPV vs conventional oxygen	0.65 (0.52–0.82)	- 5.18 (- 8.09 to - 2.26)	20 (13 to 45)	Moderate ^a
HFNC vs conventional oxygen	0.63 (0.45–0.87)	- 3.84 (- 6.7 to - 0.98)	26 (15 to 102)	Moderate ^a
NIPPV vs HFNC	1.04 (0.78–1.38)	— 1.34 (— 4.4 to 1.72)	N/A	Low ^{a,b}
HFNC + NIPPV vs conventional oxygen	0.38 (0.19–0.74)	— 10.25 (— 18.49 to — 2.01)	10 (6 to 50)	Moderate ^a
HFNC + NIPPV vs NIPPV	0.58 (0.3–1.11)	- 5.07 (- 13.38 to 3.24)	N/A	Low ^{a,b}
HFNC + NIPPV vs HFNC	0.6 (0.33–1.08)	- 6.41 (- 14.13 to 1.31)	N/A	Low ^{a,b}

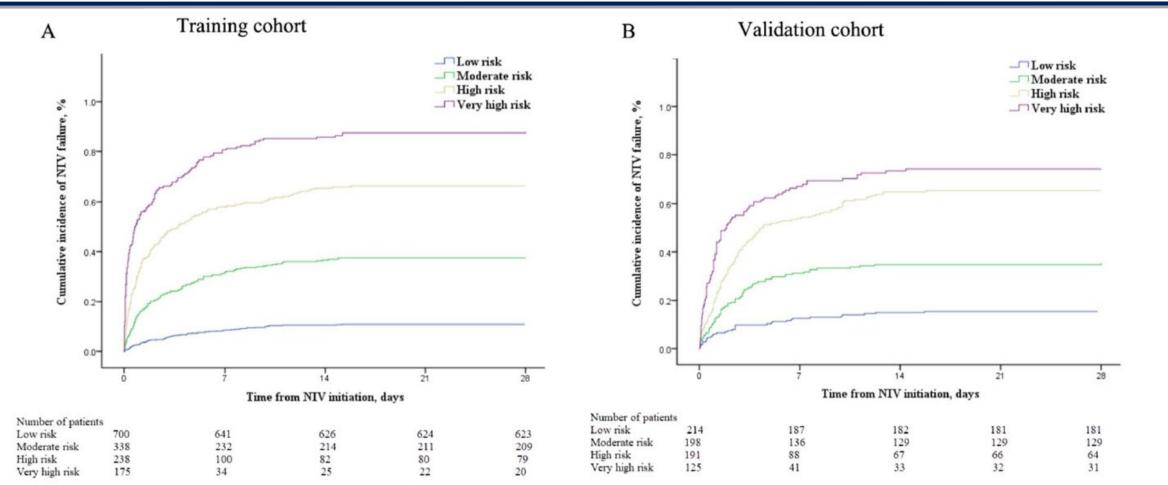
Table 3 Network estimates evaluating the efficacy of the interventions for prevention of short-term all-cause mortality in critically ill adults


Comparison	Network odds ratio (95% CI)	Absolute risk difference (95% CI)	GRADE
NIPPV vs conventional oxygen	0.8 (0.61–1.04)	- 1.65 (- 3.81 to 0.5)	Moderate ^b
HFNC vs conventional oxygen	0.9 (0.66–1.24)	- 0.29 (- 1.58 to 1.01)	Low ^a
NIPPV vs HFNC	0.89 (0.69–1.13)	- 1.37 (- 3.47 to 0.72)	Moderate ^b
HFNC + NIPPV vs conventional oxygen	0.95 (0.56–1.62)	0.41 (- 5.36 to 6.18)	Low ^a
HFNC + NIPPV vs NIPPV	1.19 (0.73–1.95)	2.07 (- 3.93 to 8.07)	Low ^a
HFNC + NIPPV vs HFNC	1.05 (0.69–1.62)	0.7 (— 4.93 to 6.33)	Low ^a

Predictors of Intubation in Patients With Acute Hypoxemic Respiratory Failure Treated With a Noninvasive Oxygenation Strategy*

Multivariate Logistic Regression Analyses of Factors Associated With Intubation

Risk Factors	OR (95% CI)	P
In patients treated with conventional O ₂ therapy by nonrebreathing mask ^a		
Respiratory rate ≥ 30 breaths/min at H1	2.76 (1.13-6.75)	0.03
In patients treated with high-flow nasal cannula oxygen therapy ^a		
Heart rate at H1 (per beat/min)	1.03 (1.01-1.06)	< 0.01
In patients treated with noninvasive ventilation ^{ab}		
Tidal volume > 9 mL/kg of predicted body weight at H1	3.14 (1.22-8.06)	0.02
Pao ₂ /Fio ₂ ≤ 200 mm Hg at H1	4.26 (1.62-11.16)	0.003


1 hour after non-invasive O2 therapy is important!

An updated HACOR score for predicting the failure of noninvasive ventilation: a multicenter prospective observational study

Jun Duan^{1*†}, Lijuan Chen^{2†}, Xiaoyi Liu^{3†}, Suha Bozbay^{4†}, Yuliang Liu^{1†}, Ke Wang^{5†}, Antonio M. Esquinas⁶,

Duan et al. Critical Care

(2022) 26:196

Points for each variable in the original HACOR score 1-2 hours after NIV application

Variable	Category	Points
Heart rate, beats/min	<120	0
	≥121	1
pH (Acidosis)	≥7.35	0
	7.30–7.34	2
	7.25–7.29	3
	<7.25	4
GCS (C onsciousness)	15	0
	13–14	2
	11–12	5
	≤10	10
PaO ₂ /FiO ₂ (O xygenation), mmHg	≥201	0
	176–200	2
	151–175	3
	126–150	4
	101–125	5
	≤100	6
Respiratory rate, breaths/min	≤30	0
	31–35	1
	36–40	2
	41–45	3
	≥46	4

Basic score for predicting NIV failure in the training cohort

Variable	Regression coefficient β per unit increase	Weight $(\beta/\beta_{reference}) \times 0.5$	Assigned points
Pneumonia	0.90	$0.90/0.19 \times 0.5 = 2.37$	2.5
CPE	– 1.59	$-1.59/0.19 \times 0.5 = -4.18$	-4
Presence of pulmonary ARDS	1.11	$1.11/0.19 \times 0.5 = 2.932$	3
Presence of immunosuppression	0.54	$0.54/0.19 \times 0.5 = 1.42$	1.5
Presence of septic shock	0.96	$0.96/0.19 \times 0.5 = 2.53$	2.5
SOFA score	0.19	$0.19/0.19 \times 0.5 = 0.5$	0.5 × SOFA

Fig. 3 Cumulative incidence of NIV failure in patients at low, moderate, high, and very high risk for NIV failure when the updated HACOR score is assessed after 1–2 h of NIV. Patients with updated HACOR scores of \leq 7, 7.5–10.5, 11–14, and > 14, respectively, were classified as being at low, moderate, high, and very high risk for NIV failure. NIV = noninvasive ventilation, HACOR = heart rate, acidosis, consciousness, oxygenation, and respiratory rate

Predictive power for NIV failure of the updated HACOR score

C . " 1	C.F.	CD.	2004	NDV	. 10	
Cutoff value	SE	SP	PPV	NPV	+ LR	-LR
Training cohort						
After 1–2 h of NIV, $N =$	1451					
>7	84.9%	67.3%	59.8%	88.6%	2.59	0.22
> 10.5	59.9%	89.6%	76.8%	79.6%	5.76	0.45
>14	29.5%	97.9%	89.1%	70.8%	14.31	0.72
After 12 h of NIV, $N = 1$	133					
>7	84.0%	71.2%	58.5%	90.2%	2.92	0.22
> 10.5	55.0%	91.8%	76.3%	80.9%	6.67	0.49
> 14	20.9%	99.5%	95.1%	72.2%	39.86	0.80
After 24 h of NIV, $N = 9$)42					
>7	77.9%	73.5%	56.6%	88.2%	2.94	0.30
> 10.5	51.7%	93.4%	77.7%	81.3%	7.84	0.52
>14	21.0%	99.2%	92.4%	73.9%	27.4	0.80
Validation cohort						
After 1–2 h of NIV, $N=$	728					
>7	89.9%	45.3%	57.4%	84.6%	1.64	0.22
> 10.5	67.7%	76.5%	70.3%	74.3%	2.88	0.42
>14	29.0%	92.5%	76.0%	61.4%	3.86	0.77
After 12 h of NIV, $N = 6$	533					
>7	90.5%	51.2%	56.7%	88.4%	1.85	0.19
> 10.5	60.3%	79.0%	66.9%	73.8%	2.87	0.50
> 14	27.5%	95.2%	80.0%	65.0%	5.66	0.76
After 24 h of NIV, $N = 5$	552					
>7	90.5%	53.2%	56.3%	89.3%	1.93	0.18
> 10.5	66.1%	78.3%	67.0%	77.5%	3.04	0.43
> 14	23.5%	95.2%	76.5%	65.1%	4.87	0.80

REVIEW Open Access

Check for updates

Noninvasive respiratory support for COVID-19 patients: when, for whom, and how?

Zachary P. Sullivan, Luca Zazzeron, Lorenzo Berra, Dean R. Hess, Edward A. Bittner and Marvin G. Chang*

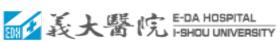
 Table 1
 Indications for NIV and HFNC in the setting of Acute Respiratory Failure

Indications for NIV in the Setting of Acute Respiratory Failure

- 1) Known patient history of OSA, COPD, congestive heart failure, or cardiogenic pulmonary edema [46, 47]
- 2) Hypercapnic respiratory failure
- 3) Dyspnea or staccato speech [48, 49]

Indications for HFNC in the Setting of Acute Respiratory Failure

- 1) $PaO_2 < 65$ or $SpO_2 < 90\%$ on supplemental oxygen [48]
- 2) RR > 25 [49]
- 3) Mild ARDS as defined by $PaO_2/FiO_2 < 300 \text{ but} > 200 [24, 49]$


Contraindications to NIV

- 1) Cardiac and respiratory arrest
- 2) Encephalopathy or altered mentation [37]
- 3) Severe hypoxaemia on admission defined as $PaO_2/FiO_2 < 150$ [50]
- 4) Pneumothorax, pleural effusion, or pulmonary embolism [49]
- 5) Active upper gastrointestinal bleed, emesis, or aspiration risk [37]
- 6) Recent facial trauma or facial surgery [37]
- 7) Hemodynamic instability as defined by vasopressor use [37, 51]
- 8) Multiorgan dysfunction or failure [51]
- 9) SOFA score > 5 is predictive of NIV failure [51, 52]
- 10) Poorly controlled respiratory secretions [37, 39, 53]
- 11) CXR/CT showing evidence of bilateral, multilobar involvement [39, 51–53]

Table 3 Appropriate monitoring of Noninvasive Respiratory Support (NIRS)

Appropriate Monitoring of Noninvasive Respiratory Support

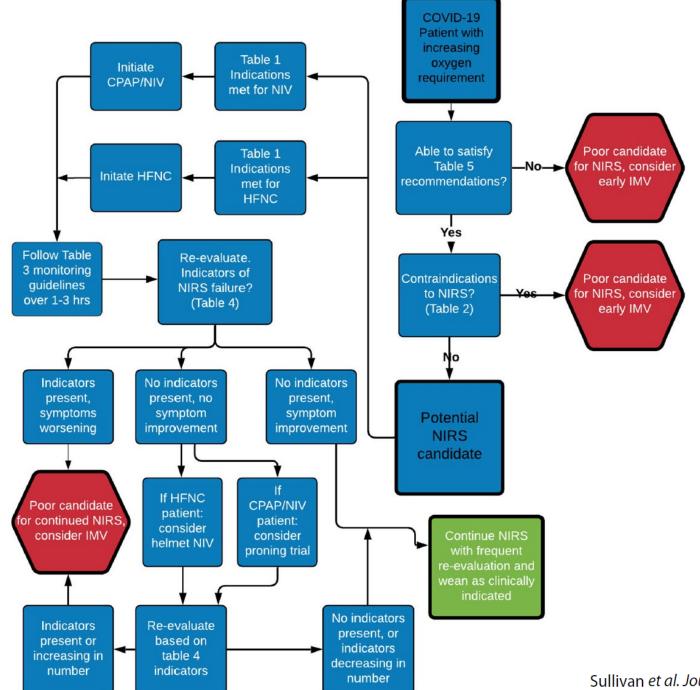
- 1) Hourly lab assessment (for 3 h)
- a) ABG including PaO₂, PaCO₂, bicarbonate, lactate, and base excess
- b) PaO_2/FiO_2 (target $PaO_2/FiO_2 > 300$) [24, 50]
- c) Subjective improvement or worsening of dyspnea [4]
- 2) Continuous monitoring (for 3 h):
- a) Heart rate and respiratory rate trends [4, 24]
- b) Pulse oximetry and FiO₂ requirement
- c) Tidal volume measurement if utilizing CPAP or NIV [21, 43, 54]

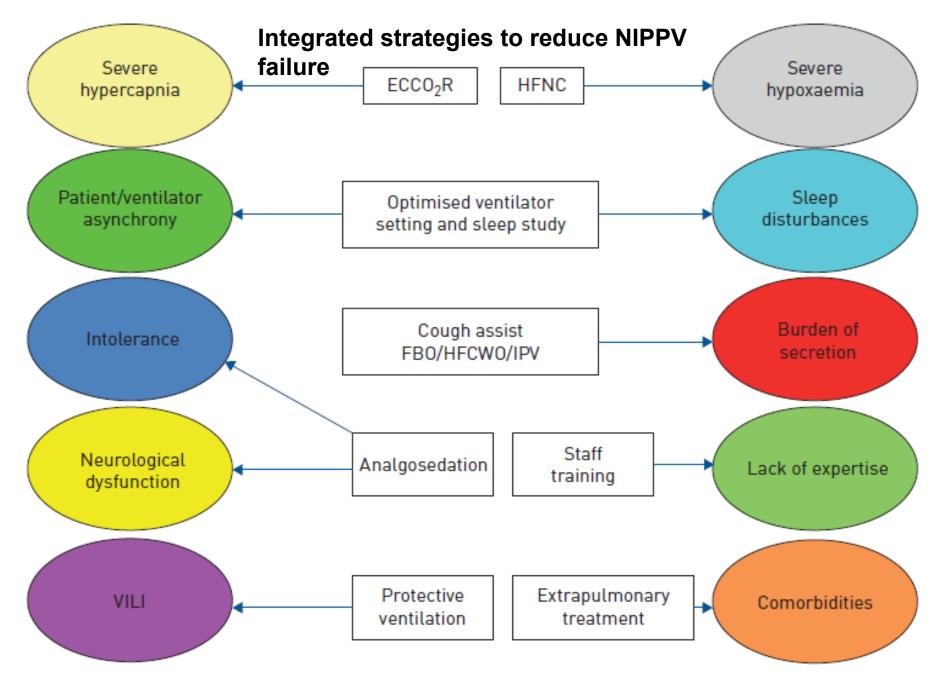
Table 4 Primary and Secondary Indicators of Noninvasive Respiratory (NIRS) failure

Primary Indicators of Noninvasive Respiratory Support Failure

- 1) $PaO_2/FiO_2 < 150$ or inability to improve PaO_2/FiO_2 after 1 h of NIV [39, 50, 55]
- 2) Worsening/unimproved dyspnea or tachypnea > 25 after 1 h of NIV [24, 39, 53, 56]
- 3) Failure to maintain PaO_2 of 60 on FiO_2 of 0.6 [39, 53]
- 4) $SpO_2/FiO_2 < 196$ [35]
- 5) Tidal volume of > 9 ml/kg predicted body weight [21, 43, 54]
- 6) ROX value less than 2.85 at 2 h, less than 3.47 at 6 h, or less than 3.85 at 12 h predict HFNC failure [57]
- 7) pH < 7.25 or PaCO₂ > 75 after 2 h of NIV [42]

Secondary Indicators of Noninvasive Respiratory Support Failure


- 1) SAPS II > 35, APACHE II > 17, or rising SOFA score [39, 51, 52, 55]
- 2) High peak pressure requirement [39, 53]
- 3) Worsening bronchorrhea [39, 53]
- 4) Intolerance of mask [39, 53]


Table 5 Safety considerations for Noninvasive Respiratory Support (NIRS) in COVID patients

Safety Considerations for Noninvasive Respiratory Support in COVID patients

- 1) Isolated negative pressure environment (room, hood, tent) [44]
- a) Preferably with anteroom and private bathroom
- 2) Full contact, droplet, and airborne isolation precautions [44]
- 3) Full PPE that includes PAPR or N-95, gown, gloves, and face/eye shield [4]
- 4) Escalation of care to ICU for rapidly increasing O2 requirement or patients on NIV
- 5) NIV with helmet and tight air cushion or unvented oronasal mask [9]
- a) Dual limb circuit over single limb circuits when utilizing CPAP or NIV
- 6) For single limb circuit, filter over leak port
- 7) Viral-bacterial filter between mask and exhalation port [4]
- 8) Staffing that allows for close monitoring to assess for deterioration
- 9) Sterile equipment nearby in preparation for emergent intubation in the event of rapid deterioration
- 10) Daily monitoring of HCW for symptoms[1]

BTS/ICS guideline for the ventilatory management of acute hypercapnic respiratory failure in adults

Indications for NIV Contraindications for NIV

NIV SETUP

NIV Monitoring

COPD

pH <7.35 pCO2 >6.5 RR>23 If persisting after bronchodilators and controlled oxygen therapy

Neuromuscular disease

Respiratory illness with RR > 20 if usual VC <1L even if pCO2<6.5 Or pH < 7.35 and pCO2>6.5

Obesity

pH <7.35, pC02>6.5, RR>23 Or Daytime pC02> 6.0 and somnolent

NIV Not indicated

Asthma/Pneumonia

Refer to ICU for consideration IMV if

increasing respiratory rate/distress

pH <7:35 and pCO2 >6.5

Absolute

Severe facial deformity Facial burns Fixed upper airway obstruction

Relative

pH<7.15 (pH<7.25 and additional adverse feature) GCS <8 Confusion/agitation Cognitive impairment (warrants enhanced observation)

Indications for referral to ICU

AHRF with impending respiratory arrest

NIV failing to augment chest wall movement or reduce pCO2

Inability to maintain Sao2 > 85-88% on NIV

Need for IV sedation or adverse features indicating need for closer monitoring and/or possible difficult intubation as in OHS, DMD.

Mask

Full face mask (or own if home user of NIV)

Initial Pressure settings

EPAP: 3 (or higher if OSA known/expected)

IPAP in COPD/OHS/KS 15 (20 if pH <7.25)

Up titrate IPAP over 10-30 mins to IPAP 20—30 to achieve adequate augmentation of chest/abdo movement and slow RR

IPAP should not exceed 30 or EPAP 8* without expert review

IPAP in NM 10 (or 5 above usual setting)

Backup rate

Backup Rate of 16-20. Set appropriate inspiratory time

I:E ratio

COPD 1:2 to 1.3 OHS, NM & CWD 1:1

Inspiratory time

0.8-1.2s COPD 1.2-1.5s OHS, NM & CWD

Use NIV for as much time as possible in 1st 24hours.

Taper depending on tolerance & ABGs over next 48-72 hours

SEEK AND TREAT REVERSIBLE CAUSES OF AHRF

* Possible need for EPAP > 8

Severe OHS (BMI >35), lung recruitment eg hypoxia in severe kyphoscolios, oppose intrinsic PEEP in severe airflow obstruction or to maintain adequate PS when high EPAP required

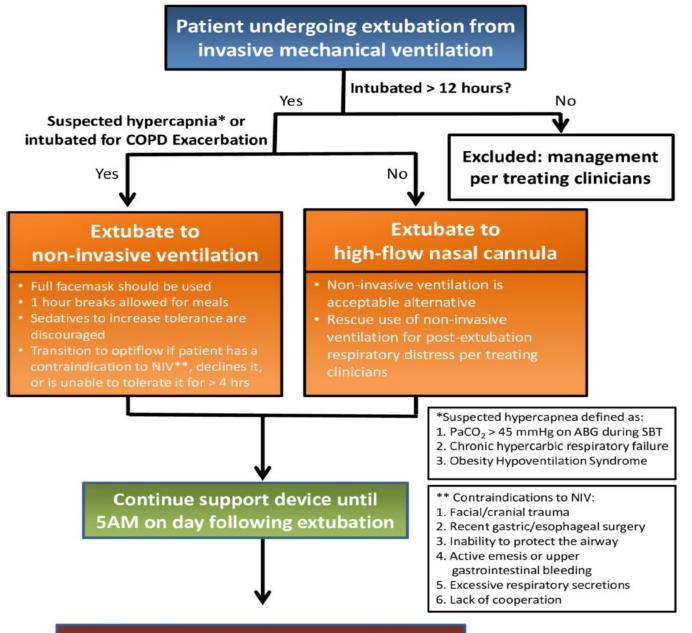
Oxygenation

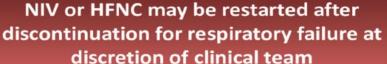
Aim 88-92% in all patients

Note: Home style ventilators CANNOT provide > 50% inspired oxygen.

If high oxygen need or rapid desaturation on disconnection from NIV consider IMV.

Red flags


pH <7.25 on optimal NIV RR persisting > 25 New onset confusion or patient distress


Actions

Check synchronisation, mask fit, exhalation port : give physiotherapy/bronchodilators, consider anxiolytic

CONSIDER IMV

義大醫院器

Proposal of management of oxygenation strategies to prevent or treat respiratory failure in patients extubated in ICUs

Summary

- NIPPV and HFNC are widely used in the critical care area and it is the first-line intervention for certain forms of ARF
- Explore the results of clinical studies on NIPPV and HFNC is very important to avoid drawbacks and to reduce the rate of failure during its application.
- Understanding principle of functioning of ventilator and modes will lead the operator to choose the best approach for patients.

